The relative competitive advantage of 12 commercially available wheat varieties was examined against Lolium rigidum Gaud. at a number of sites from 1995 to 1997 in south‐eastern Australia. Nearly all the variation in crop grain yield was attributable to the variety × environment effects (81%), with only 4% due to variety × weed × environment effects. Some varieties exhibited an environment‐specific competitive advantage, for example Katunga, Dollarbird and Hartog, whereas others like Shrike, Rosella and Janz were relatively poorly competitive in some situations. The introduction of greater genetic variability into wheat is required to significantly increase competitiveness. Alternatively, manipulating crop agronomy, such as increasing crop seeding rate, may be a practical alternative. The grain yield of weed‐free wheat was highly positively correlated with grain yield of the weedy plots, suggesting that local adaptation is important for strong competitiveness, and that wheat breeders in southern Australia may be inadvertently selecting for competitive advantage with weeds when selecting for other traits such as early vigour. The varieties which showed competitive yield advantage also suppressed L. rigidum. A combination of short‐term agronomic manipulations and a longer‐term breeding effort is needed for increasing wheat competitiveness, and the increasing importance of herbicide‐resistant weeds may facilitate this process.
Zymoseptoria tritici is a globally distributed fungal pathogen which causes Septoria tritici blotch on wheat. Management of the disease is attempted through the deployment of resistant wheat cultivars and the application of fungicides. However, fungicide resistance is commonly observed in Z. tritici populations, and continuous monitoring is required to detect breakdowns in fungicide efficacy. We recently reported azole-resistant isolates in Australia; however, it remained unknown whether resistance was brought into the continent through gene flow or whether resistance emerged independently. To address this question, we screened 43 isolates across five Australian locations for azole sensitivity and performed wholegenome sequencing on 58 isolates from seven locations to determine the genetic basis of resistance. Population genomic analyses showed extremely strong differentiation between the Australian population recovered after azoles began to be used and both Australian populations recovered before azoles began to be used and populations on different continents. The apparent absence of recent gene flow between Australia and other continents suggests that azole fungicide resistance has evolved de novo and subsequently spread within Tasmania. Despite the isolates being distinct at the whole-genome level, we observed combinations of nonsynonymous substitutions at the CYP51 locus identical to those observed elsewhere in the world. We observed nine previously reported nonsynonymous mutations as well as isolates that carried a combination of the previously reported L50S, S188N, A379G, I381V, Y459DEL, G460DEL, and N513K substitutions. Assays for the 50% effective concentration against a subset of isolates exposed to the tebuconazole and epoxiconazole fungicides showed high levels of azole resistance. The rapid, parallel evolution of a complex CYP51 haplotype that matches a dominant European haplotype demonstrates the enormous potential for de novo resistance emergence in pathogenic fungi.
Grazing management strategies to alter botanical composition of native pastures were investigated at 4 locations in the high rainfall zone of south-east Australia, including Tasmania. These studies were conducted as part of the Temperate Pasture Sustainability Key Program, which evaluated the effects of grazing management on a wide range of pasture types between 1993 and 1996. Pastures in this study were based on Aristida ramosa/Bothriochloa macra, Microlaena stipoides–Austrodanthonia spp. or Themeda triandra–Austrodanthonia spp. Seasonal rests, increased grazing pressure in spring, mob stocking and cutting for hay were compared to continuous grazing at all sites. In addition, specific local treatments were tested at individual sites. Changes in composition resulting from the treatments were minimal at most sites. This may have been due to a combination of the inherent stability of the pastures, the relatively short duration of the experiments, and the drought conditions experienced, which minimised differences between treatments. Some strategies to alter composition of natural pastures are suggested. In the Aristida–Bothriochloa pasture there was a general decrease in Aristida and an increase in Bothriochloa, which was largely unaffected by the type of grazing management applied. The combination of drought conditions and increasing grazing pressure was sufficient to alter composition without specific management strategies being necessary. In the Themeda–Austrodanthonia pasture, resting in spring, 12-month rests or cutting for hay (which involved a spring rest) allowed Themeda to increase in the pasture. The Microlaena–Austrodanthonia pastures were very stable, especially where annual grass content was low. However, certain treatments allowed Microlaena to increase, a result which is regarded as being favourable. The major effects in these latter pastures were on undesirable species. Vulpia spp. were reduced by resting in autumn and increased spring grazing pressure, while Holcus lanatus was increased dramatically by resting in spring and was also increased by resting in autumn or winter, but only when conditions were suitable for growth of this species. In many cases, treatment differences were only expressed following recovery from drought, showing that timing of grazing management to achieve change is critical.
Grapevine (Vitis vinifera) roots and leaves represent major carbohydrate and nitrogen (N) sources, either as recent assimilates, or mobilized from labile or storage pools. This study examined the response of root and leaf primary metabolism following defoliation treatments applied to fruiting vines during ripening. The objective was to link alterations in root and leaf metabolism to carbohydrate and N source functioning under conditions of increased fruit sink demand. Potted grapevine leaf area was adjusted near the start of véraison to 25 primary leaves per vine compared to 100 leaves for the control. An additional group of vines were completely defoliated. Fruit sugar and N content development was assessed, and root and leaf starch and N concentrations determined. An untargeted GC/MS approach was undertaken to evaluate root and leaf primary metabolite concentrations. Partial and full defoliation increased root carbohydrate source contribution towards berry sugar accumulation, evident through starch remobilization. Furthermore, root myo-inositol metabolism played a distinct role during carbohydrate remobilization. Full defoliation induced shikimate pathway derived aromatic amino acid accumulation in roots, while arginine accumulated after full and partial defoliation. Likewise, various leaf amino acids accumulated after partial defoliation. These results suggest elevated root and leaf amino N source activity when leaf N availability is restricted during fruit ripening. Overall, this study provides novel information regarding the impact of leaf source restriction, on metabolic compositions of major carbohydrate and N sources during berry maturation. These results enhance the understanding of source organ carbon and N metabolism during fruit maturation.
Eight rice experiments were established at two sites in the Riverina district of south-eastern Australia in the 2012–13 and 2013–14 seasons. Two semi-dwarf rice varieties were drill-sown and nitrogen (N) fertiliser (urea) was applied at different rates at the 4-leaf stage before permanent water (pre-PW) and at panicle initiation (PI). The research assessed the impact of timing of N application on grain yield, compared the apparent N recovery of N fertiliser applied at the two stages, and determined an application strategy for N to obtain consistently high grain yields for current, semi-dwarf rice varieties when drill-sown. The apparent N recoveries achieved were 59% for N applied pre-PW and 25% for N applied at PI, averaged across years, sites, varieties and N rates. Grain yield increased significantly with increased rate of N applied at both stages, but the rate of increase from N applied at PI decreased as the rate of N applied pre-PW increased. The grain yield increase for N applied pre-PW was due to increased number of panicles at maturity and increased number of florets per panicle. Nitrogen applied at PI increased dry matter at maturity and number of florets per panicle. Application of N at PI increased grain yield over that when no N was applied; however, at low PI N-uptake levels, application of N at PI is not enough to achieve high grain yields. Therefore, sufficient N should be available to the crop from a combination of soil- and pre-PW-applied N for the crop to reach a level of N uptake at PI whereby high yields can be achieved. Nitrogen applied at PI did not appear to increase the potential for cold-induced floret sterility as much as pre-PW-applied N. Further research is required to confirm this in other seasons and for other rice varieties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.