During tomato seed development the endogenous abscisic acid (ABA) concentration peaks at about 50 d after pollination (DAP) and then declines at later stages (60-70 DAP) of maturation. The ABA concentration in the sheath tissue immediately surrounding the seed increases with time of development, whereas that of the locule declines. The water contents of the seed and fruit tissues are similar during early development (20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30), but decline in the seed tissues between 30 and 40 DAP. The water potential and the osmotic potential of the embryo are lower than that of the locular tissue after 35 DAP also. Seeds removed from the fruit at 30, 35, and 60 DAP and placed ex situ on 35 and 60 DAP sheath and locular tissue are prevented from germinating. Development of 30 DAP seeds is maintained or promoted by the ex situ fruit tissue with which they are in contact. Their germination is inhibited until subsequent transfer to water, and germination is normal, i.e. by radicle protrusion, and viable seedlings are produced, compared with 30 DAP seeds transferred directly to water; more of these seeds germinate, but by hypocotyl extension, and seedling viability is very poor. Isolated seeds at 35 and 60 DAP re-placed in contact with fruit tissues only germinate when transferred to water after 7 d. At 30 DAP, isolated seeds are insensitive to ABA at physiological concentrations in that they germinate as if on water, albeit by hypocotyl extension. At higher concentrations germination occurs by radicle protrusion. Osmoticum prevents germination, but there is some recovery upon subsequent transfer to water. Seeds at 35 DAP are very sensitive to ABA and exhibit little or no germination, even upon transfer to water. The response of the isolated seeds to osmoticum more closely approximates that to incubation on the ex situ fruit tissues than does their response to ABA. This is also the case for isolated 60 DAP seeds, whose germination is not prevented by ABA, but only by the osmoticum; these seeds are inhibited when in contact with ex situ fruit tissues also. It is proposed that the osmotic environment within the tissues of the tomato fruit plays a greater role than endogenous ABA in preventing precocious germination of the developing seeds.rounding seed and fruit tissues, respectively, have a role in maintaining development and inhibiting precocious germination. The continuation of embryo development (i.e. growth and storage protein accumulation) and the inhibition of precocious germination can occur in culture in the presence of ABA and various osmotica (5,17,27,28). In some cases, the ability of the osmoticum to mimic the effect of exogenous ABA is related to an increase in embryo ABA (4). This is not observed for all species or conditions used (8) and is often attributed to differences in experimental materials and protocols (i.e. embryo age, ABA concentrations, type of osmotica used). The role of the fruit tissues in maintaining developmental events and in inhibiting precocious germinati...
Mannose-containing polysaccharides are widely distributed in cell walls of higher plants. During endosperm mobilization in germinated tomato seeds (1-->4)-beta-mannan endohydrolases (EC 3.2.1.78) participate in the enzymic depolymerization of these cell wall polysaccharides. A cDNA encoding a (1-->4)-beta-mannanase from the endosperm of germinated tomato (Lycopersicon esculentum Mill.) seeds has been isolated and characterized. The amino acid sequence deduced from the 5'-region of the cDNA exactly matches the sequence of the 65 NH2-terminal amino acids determined directly from the purified enzyme. The mature enzyme consists of 346 amino acid residues, it has a calculated M(r) of 38,950 and an isoelectric point of 5.3. Overall, the enzyme exhibits only 28-30% sequence identity with fungal (1-->4)-beta-mannanases, but more highly conserved regions, which may represent catalytic and substrate-binding domains, can be identified. Based on classification of the tomato (1-->4)-beta-mannanase as a member of the family 5 group of glycosyl hydrolases, Glu-148 and Glu-265 would be expected to be the catalytic acid and the catalytic nucleophile, respectively. Southern hybridization analyses indicate that the enzyme is derived from a family of about four genes. Expression of the genes, as determined by the presence of mRNA transcripts in Northern hybridization analyses, occurs in the endosperm of germinated seeds; no transcripts are detected in hypocotyls, cotyledons, roots or leaves.
Seed water content is high during early development of tomato seeds (10-30 d after pollination (DAP)), declines at 35 DAP, then increases slightly during fruit ripening (following 50 DAP). The seed does not undergo maturation drying. Protein content during seed development peaks at 35 DAP in the embryo, while in the endosperm it exhibits a triphasic accumulation pattern. Peaks in endosperm protein deposition correspond to changes in endosperm morphology (i.e. formation of the hard endosperm) and are largely the consequence of increases in storage proteins. Storage-protein deposition commences at 20 DAP in the embryo and endosperm; both tissues accumulate identical proteins. Embryo maturation is complete by 40 DAP, when maximum embryo protein content, size and seed dry weight are attained. Seeds are tolerant of premature drying (fast and slow drying) from 40 DAP.Thirty-and 35-DAP seeds when removed from the fruit tissue and imbibed on water, complete germination by 120 h after isolation. Only seeds which have developed to 35 DAP produce viable seedlings. The inability of isolated 30-DAP seed to form viable seedlings appears to be related to a lack of stored nutrients, since the germinability of excised embryos (20 DAP and onwards) placed on Murashige and Skoog (1962, Physiol. Plant. 15, 473-497) medium is high. The switch from a developmental to germinative mode in the excised 30- and 35-DAP imbibed seeds is reflected in the pattern of in-vivo protein synthesis. Developmental and germinative proteins are present in the embryo and endosperm of the 30- and 35-DAP seeds 12 h after their isolation from the fruit. The mature seed (60 DAP) exhibits germinative protein synthesis from the earliest time of imbibition. The fruit environment prevents precocious germination of developing seeds, since the switch from development to germination requires only their removal from the fruit tissue.
In Ricinus communis L. (castor bean) endosperms, two classes of Late Embryogenesis Abundant (Lea) transcripts were first detected during mid-development (at 30-35 days after pollination, DAP) and peaked at 50 DAP, just prior to the onset of desiccation. Most of the Class I mRNAs declined substantially during desiccation itself; Class II mRNAs remained abundant in the mature dry (60 DAP) seed. Following imbibition, all Lea mRNAs abundant in the mature dry seed declined rapidly (within 5-24 h). Premature drying of developing 35-DAP seeds resulted in the loss of storage-protein mRNAs (Leg B Mat I); following rehydration, mRNAs encoding post-germinative proteins (Germ D91, D30 and D38) increased in the endosperm. The Lea mRNAs present in the developing fresh seed at 35 DAP were preserved, but did not increase in response to premature desiccation; upon rehydration these Lea mRNAs declined within 5 h. During seed development, substantial changes occurred in the synthesis of a subset of LEA proteins referred to as "dehydrins'; in particular, new dehydrin polypeptides were induced between 40 and 60 DAP. Such proteins were not as evident in prematurely dried endosperms. In contrast to the rapid loss of Lea mRNAs during germination, many of the dehydrin proteins abundant in the dried seed persisted following imbibition or rehydration.
Studies using light and electron microscopy, and energy-dispersive X-ray analysis have allowed us to identify phytin particles within the cytoplasm of the developing endosperm of castor bean (Ricinus communis L.). These particles are present at the time of the formation of globoid particles within the protein bodies, but they are absent from mature tissue with fully formed protein bodies. We suggest that phytin is formed initially in the cytoplasm (perhaps in association with the cisternal endoplasmic reticulum) before being transported to the protein bodies, wherein it condenses to form the globoid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.