Within the scope of this study, a wearable lying position tracking system equipped with IMU sensors has been developed to prevent the formation of pressure injuries in bedridden patients. Three IMU sensors were placed on the patient's chest, one on the right upper leg and the other on the left upper leg, and the angular orientation expressions of the limbs were calculated. Datasets were created for three different hospitalization positions, and machine learning and deep neural network models were used to classify the patient's hospitalization type. The success of the classifiers was compared by calculating the accuracy, sensitivity, specificity, precision and F1 score values. The average accuracy values in the lying position classification were obtained as 99.506%, 99.977%, 99.972%, 99.838%, and 99.967% respectively, using Linear discriminant analysis, K-Nearest neighbor, Decision Tree, Support Vector Machine and Random Forest classification methods. The highest accuracy rate was obtained as a result of the K-Nearest neighbor method with high variation. The time that the person remained fixed in the determined lying position was also calculated, and if it remained longer than the specified time, an audible warning signal was generated to change the position. Thus, it has been tried to prevent the person to apply pressure by lying on a single muscle group and tissue for a long time and to prevent the formation of pressure injuries over time.
Metaller, modern zamanların en önemli yapı malzemelerinden biridir. Özellikle yassı metal sacın üretim ve işleme süreci oldukça hassastır. Üretim sürecinin kontrolü sadece ara ürünlerin değil, aynı zamanda son ürünlerinde kalitesini etkiler. Çelik levha yüzeylerinde oluşan hataların erken tespiti, endüstriyel üretimde önemli bir görevdir. Geleneksel olarak süreç kontrolü ve hata tespiti uzman kişiler tarafından manuel olarak yapılmaktadır. Ancak bu yöntem hem zaman hem de maliyet açısından uygun değildir. Sanayi devrimi IR 4.0 ile ürünlerde hata tespit problemlerini çözmek için makine öğrenimi (ML) teknikleri geliştirilmiştir. Bu çalışma, çelik yüzeyde üretim esnasında oluşabilecek altı farklı hata sınıfının tespiti için temel makine öğrenme yöntemleri geliştirmeye odaklanmıştır. Sınıflandırma problemi için beş standart ML modeli: LD, KNN, DT, SVM, RF ve bir derin öğrenme (DNN) modeli: tek boyutlu DNN geliştirilmiştir. Deneysel veri seti olarak UCI çelik plaka deformasyon veri seti kullanılmıştır. Yöntemlerin başarısını tespit etmek için beş performans kriteri: Doğruluk, Duyarlılık, Özgüllük, Kesinlik, F1 değeri kullanılmıştır. LD, KNN, DT, SVM, RF ve DNN sınıflandırma yöntemlerinin başarı oranları sırasıyla 90.136%, 91.780%, 93.013%, 93.287%, 95.479%, 96.986% olarak elde edilmiştir. Sonuçlar, makina öğrenmesi yaklaşımının çelik levha arıza teşhis problemindeki önemli etkisini gösterilmiştir.
Öz: Bu çalışmada, giyilebilir minyatür atalet sensör kullanılarak insan alt ekstremite aktivitelerinin sınıflandırılması çalışması gerçekleştirilmiştir. Çalışmada kullanılan atalet sensörü dokuz serbestlik dereceli olup bünyesinde üç eksenli bir jiroskop, üç eksenli bir ivmeölçer ve üç eksenli bir manyetometre barındırmaktadır. Gönüllü kişinin sağ ayak bileğine giydiği takılan bir adet atalet sensör vasıtasıyla kişin yürüme, koşma, merdiven çıkma, oturma hareketleri esnasında hareket verileri toplanmış ve kaydedilmiştir. İlk olarak kaydedilen bu üç sensör verisi sentezlenerek bacağın hareket esnasındaki kinematik yönelim açıları (yunuslama, yuvarlama, yalpa) hesaplanmıştır. Sonrasında bu yönelim açılarına ait iki adet özellik (enerji ve maksimum değer) matrisi hesaplanmıştır. Hesaplanan bu özellik matrisleri hareket sınıflandırma algoritmalarına girdi olarak verilmiştir. Çalışma kapsamında dört adet hareket sınıflandırma algoritması kullanılmıştır. Bunlar karar ağacı, k-en yakın komşu, destek vektör makinası ve rastgele orman sınıflandırma algoritmalarıdır. Tüm alt ekstremite hareket tiplerinde en yüksek sınıflandırma başarısı en yakın komşu sınıflandırıcısı ile elde edilmiş olup yürüme, koşma, oturma, merdiven çıkma hareketleri için sırası ile hareket sınıflandırma doğruluğu %83.3, %100, % 83.3ve %91.6'dir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.