D-(-)-beta-Hydroxybutyrate and acetoacetate cause a rapid, sustained, and rapidly reversible stimulation of insulin release from rat pancreatic islets incubated in the presence, but not absence, of D-glucose. This coincides with stimulation of both proinsulin biosynthesis and 45Ca net uptake. The ketone bodies also decrease 45Ca outflow from prelabeled islets perifused in the absence of Ca2+ and, in contrast, enhance effluent radioactivity in the presence of Ca2+. In the presence of D-glucose, the secretory response to D-(-)-beta-hydroxybutyrate is concentration related in the 2.5-20 mM range, abolished in the absence of Ca2+ or presence of KCN, and enhanced by theophylline and forskolin. It corresponds grossly to a shift to the left of the sigmoidal curve relating insulin output to the ambient concentration of D-glucose. The secretory, biosynthetic, and cationic response to acetoacetate is less marked than that evoked by an equimolar concentration of D-(-)-beta-hydroxybutyrate. These features are compatible with the view that the insulinotropic action of ketone bodies would be causally linked to their metabolism in islet cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.