Gene therapy studies have been of great importance in the elimination of genetic diseases, and the capability of the CRISPR/Cas9 genome editing technique to correct genetic defects has shown great promise. As DNA-based Cas9 nuclease delivery is preferable because of its low cost and higher stability, effective vector-based CRISPR/Cas9 administration is urgently needed. Here, we used the multicellular organism Caenorhabditis elegans to optimize the polymer-mediated DNA delivery system to generate mutants with CRISPR/Cas9. Toward this end, the cationically quaternized polymer of POEGMA-b-P4VP (POEGMA-b-QP4VP) as a carrier of CRISPR/Cas9 components was first synthesized, followed by the formation of plasmid DNA-polymer complex called polyplexes. 1H NMR, Zeta-Sizer, Scanning Electron Microscopy (SEM) analysis, and gel retardation experiments confirmed the polyplexes formation, including pRF4 (Roller) and sgRNA dpy-10, which were then incubated with C. elegans. The polymer-mediated delivery system facilitated the generation of transgenic Roller animals and heritable Dumpy mutants with CRISPR/Cas9. Our study for the first time demonstrated optimized administration of CRISPR/Cas 9 components to C. elegans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.