Following a large-scale radiological incident, there is a need for FDA-approved biodosimetry devices and biomarkers with the ability to rapidly determine past radiation exposure with sufficient accuracy for early population triage and medical management. Towards this goal, we have developed FAST-DOSE (Fluorescent Automated Screening Tool for Dosimetry), an immunofluorescent, biomarkerbased system designed to reconstruct absorbed radiation dose in peripheral blood samples collected from potentially exposed individuals. The objective of this study was to examine the performance of the FAST-DOSE assay system to quantify intracellular protein changes in blood leukocytes for early biodosimetry triage from humanized NOD-scid-gamma (Hu-NSG) mice and non-human primates (NHPs) exposed to ionizing radiation up to 8 days after radiation exposure. In the Hu-NSG mice studies, the FAST-DOSE biomarker panel was able to generate delivered dose estimates at days 1, 2 and 3 post exposure, whereas in the NHP studies, the biomarker panel was able to successfully classify samples by dose categories below or above 2 Gy up to 8 days after total body exposure. These results suggest that the FAST-DOSE bioassay has large potential as a useful diagnostic tool for rapid and reliable screening of potentially exposed individuals to aid early triage decisions within the first week post-exposure. In the event of a large-scale radiological incident or accident, hundreds of thousands of people may be exposed to ionizing radiation. There is an important need for the development of FDA-approved point-of-care radiation biodosimeters and in vitro diagnostic devices (IVDs) with the ability to rapidly determine past radiation exposure with sufficient accuracy for early population triage and medical management. Biodosimetry technologies may be designed for early in-the-field triage (usually qualitative) or for more clinical evaluation and medical management that includes dose level confirmation (usually quantitative or semi-quantitative) 1. We have recently developed a new high-throughput biodosimetry assay system called FAST-DOSE (Fluorescent Automated Screening Tool for Dosimetry) which is designed for rapid immune-detection and quantitation of radiation responsive protein biomarkers and reconstruction of dose in human peripheral blood leukocytes. This biomarker-based triage assay has large potential as a useful diagnostic tool for the mass-screening of potentially exposed individuals and offers a short "time-to-result" since cell culture is not required compared with the gold standard micronucleus and dicentric biodosimetry assays 2-4. The FAST-DOSE assay device is based on imaging flow cytometry (IFC) 5-7 and a panel of intracellular biomarkers identified by earlier proteomic study 8 to rapidly quantify the upregulation of biomarker expression in blood leukocytes using fluorescent imagery and algorithms for the estimation of absorbed dose. The advantage of IFC (ImageStream, Luminex, Austin, TX) technology is that it combines the speed and quantifica...
During a large-scale radiological event such as an improvised nuclear device detonation, many survivors will be shielded from radiation by environmental objects, and experience only partial-body irradiation (PBI), which has different consequences, compared with total-body irradiation (TBI). In this study, we tested the hypothesis that applying machine learning to a combination of radiation-responsive biomarkers (ACTN1, DDB2, FDXR) and B and T cell counts will quantify and distinguish between PBI and TBI exposures. Adult C57BL/6 mice of both sexes were exposed to 0, 2.0–2.5 or 5.0 Gy of half-body PBI or TBI. The random forest (RF) algorithm trained on ½ of the data reconstructed the radiation dose on the remaining testing portion of the data with mean absolute error of 0.749 Gy and reconstructed the product of dose and exposure status (defined as 1.0 × Dose for TBI and 0.5 × Dose for PBI) with MAE of 0.472 Gy. Among irradiated samples, PBI could be distinguished from TBI: ROC curve AUC = 0.944 (95% CI: 0.844–1.0). Mouse sex did not significantly affect dose reconstruction. These results support the hypothesis that combinations of protein biomarkers and blood cell counts can complement existing methods for biodosimetry of PBI and TBI exposures.
Peripheral blood mononuclear cells (PBMCs) are a useful model for biochemical assays, particularly for etiological studies. We describe here a method for measuring DNA repair capacity (DRC) in archival cryogenically preserved PBMCs. To model DRC, we measured γ-H2AX repair kinetics in thawed PBMCs after irradiation with 3 Gy gamma rays. Time-dependent fluorescently labeled γ-H2AX levels were measured at five time points from 1 to 20 h, yielding an estimate of global DRC repair kinetics as well as a measure of unrepaired double strand breaks at 20 h. While γ-H2AX levels are traditionally measured by either microscopy or flow-cytometry, we developed a protocol for imaging flow cytometry (IFC) that combines the detailed information of microscopy with the statistical power of flow methods. The visual imaging component of the IFC allows for monitoring aspects such as cellular health and apoptosis as well as fluorescence localization of the γ-H2AX signal, which ensures the power and significance of this technique. Application of a machinelearning based image classification improved flow cytometry fluorescent measurements by identifying apoptotic cells unable to undergo DNA repair. We present here DRC repair parameters from 18 frozen archival PBMCs and 28 fresh blood samples collected from a demographically diverse cohort of women measured in a highthroughput IFC format. This thaw method and assay can be used alone or in conjunction with other assays to measure etiological phenotypes in cryogenic biobanks of PBMCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.