International audienceThe ‘4 per mille Soils for Food Security and Climate’ was launched at the COP21 with an aspiration to increase global soil organic matter stocks by 4 per 1000 (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia). We asked whether the 4 per mille initiative is feasible for the region. The outcomes highlight region specific efforts and scopes for soil carbon sequestration. Reported soil C sequestration rates globally show that under best management practices, 4 per mille or even higher sequestration rates can be accomplished. High C sequestration rates (up to 10 per mille) can be achieved for soils with low initial SOC stock (topsoil less than 30 t C ha−1), and at the first twenty years after implementation of best management practices. In addition, areas which have reached equilibrium will not be able to further increase their sequestration. We found that most studies on SOC sequestration only consider topsoil (up to 0.3 m depth), as it is considered to be most affected by management techniques. The 4 per mille number was based on a blanket calculation of the whole global soil profile C stock, however the potential to increase SOC is mostly on managed agricultural lands. If we consider 4 per mille in the top 1m of global agricultural soils, SOC sequestration is between 2-3 Gt C year−1, which effectively offset 20–35% of global anthropogenic greenhouse gas emissions. As a strategy for climate change mitigation, soil carbon sequestration buys time over the next ten to twenty years while other effective sequestration and low carbon technologies become viable. The challenge for cropping farmers is to find disruptive technologies that will further improve soil condition and deliver increased soil carbon. Progress in 4 per mille requires collaboration and communication between scientists, farmers, policy makers, and marketeers
Natural and synthetic analogues of steroid hormones and their metabolites have emerged as contaminants of concern. Characterizing sorption and degradation processes is essential to assess the environmental distribution, persistence, and ecological significance of steroid hormones in terrestrial and aquatic systems. We examined the fate and transport of testosterone and 17beta-estradiol by conducting a series of fast-flow-velocity transport experiments under pulse-type and flow-interruption boundary conditions in columns packed with a surface soil, freshwater sediment, and two sands. Flow-interruption experiments provided independent estimates of degradation coefficients for the parent hormones and their metabolites, while pulse-input type experiments were used to identify transport mechanisms for hormones by employing forward modeling approaches. Estimated degradation rate coefficients (k) for the hormones from flow-interruption experiments ranged from 0.003 to 0.015 h(-1) for testosterone and from 0.0003 to 0.075 h(-1) for estradiol, similar to those observed in batch studies. Degradation rate coefficients for the two primary metabolites were 1-2 orders of magnitude larger than those for the parent chemicals. Estimated k values decreased with column life as a result of nutrient depletion. Large sorption by soils of the parent and metabolites (log Koc approximately 2.77-3.69) did not appear to hinder degradation; k values were an order of magnitude smaller than the estimated sorption mass-transfer constants. Differences in hormone breakthrough curves from a single-pulse displacement and those predicted using independently estimated parameters suggest that modeling hormone degradation as a simple first-order kinetic process may be sufficient, but not accurate.
A dual‐probe heat pulse (DPHP) method was developed recently that allows for the simultaneous, automated measurement of soil thermal diffusivity (κ), volumetric heat capacity (ρc), and thermal conductivity (λ). Estimation of thermal properties is based on theory for the conduction of heat away from an infinite line source (ILS) that is heated for a short period of time. In this study, we examined possible sources of error in the use of the ILS theory by comparing it with other models that explicitly account for finite length and cylindrical shape of the actual heater. For probe geometry and heating times typical of our experimental work, the analysis of model error showed that assuming an infinite length for a heat source of finite length caused errors <2% in the estimated thermal properties. Assuming the cylindrically shaped heater to be a line heat source caused errors of <0.6% in the estimated thermal properties. Thus, the ILS theory appears to be appropriate for use in the DPHP method if probe geometry is considered carefully. However, small changes in probe geometry can lead to large model errors. First‐order error analysis also was used to predict how thermal property estimates will be affected by experimental errors in the measured inputs to the ILS model. The analysis shows that κ and ρc estimates are sensitive to measurement error in probe spacing (r), but λ is unaffected by error in r. Estimates of κ and λ were shown to be sensitive to measurement error in the time to the temperature maximum (tm), whereas ρc was affected only slightly by such error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.