An upper bound for sorting permutations with an operation estimates the diameter of the corresponding Cayley graph and an exact upper bound equals the diameter. Computing tight upper bounds for various operations is of theoretical and practical (e.g., interconnection networks, genetics) interest. Akers and Krishnamurthy gave a Ω(n! n2) time method that examines n! permutations to compute an upper bound, f(Γ), to sort any permutation with a given transposition tree T, where Γ is the Cayley graph corresponding to T. We compute two intuitive upper bounds γ and δ′ each in O(n2) time for the same, by working solely with the transposition tree. Recently, Ganesan computed β, an estimate of the exact upper bound for the same, in O(n2) time. Our upper bounds are tighter than f(Γ) and β, on average and in most of the cases. For a class of trees, we prove that the new upper bounds are tighter than β and f(Γ).
A k-bounded (k ≥ 2) transposition is an operation that switches two elements that have at most k - 2 elements in between. We study the problem of sorting a circular permutation π of length n for k = 2, i.e., adjacent swaps and k = 3, i.e., short swaps. These transpositions mimic microrearrangements of gene order in viruses and bacteria. We prove a (1/4)n (2) lower bound for sorting by adjacent swaps. We show upper bounds of (5/32)n (2) + O(n log n) and (7/8)n + O(log n) for sequential and parallel sorting, respectively, by short swaps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.