The 2-dimensional gel electrophoresis (2-DE) technique is widely used for the analysis of complex protein mixtures extracted from biological samples. It is one of the most commonly used analytical techniques in proteomics to study qualitative and quantitative protein changes between different states of a cell or an organism (eg, healthy and diseased), conditionally expressed proteins, posttranslational modifications, and so on. The 2-DE technique is used for its unparalleled ability to separate thousands of proteins simultaneously. The resolution of the proteins by 2-DE largely depends on the quality of sample prepared during protein extraction which increases results in terms of reproducibility and minimizes protein modifications that may result in artifactual spots on 2-DE gels. The buffer used for the extraction and solubilization of proteins influences the quality and reproducibility of the resolution of proteins on 2-DE gel. The purification by cleanup kit is another powerful process to prevent horizontal streaking which occurs during isoelectric focusing due to the presence of contaminants such as salts, lipids, nucleic acids, and detergents. Erythrocyte membrane proteins serve as prototypes for multifunctional proteins in various erythroid and nonerythroid cells. In this study, we therefore optimized the selected major conditions of 2-DE for resolving various proteins of human erythrocyte membrane. The modification included the optimization of conditions for sample preparation, cleanup of protein sample, isoelectric focusing, equilibration, and storage of immobilized pH gradient strips, which were further carefully examined to achieve optimum conditions for improving the quality of protein spots on 2-DE gels. The present improved 2-DE analysis method enabled better detection of protein spots with higher quality and reproducibility. Therefore, the conditions established in this study may be used for the 2-DE analysis of erythrocyte membrane proteins for different diseases, which may help to identify the proteins that may serve as markers for diagnostics as well as targets for development of new therapeutic potential.
Background Calcium has been shown to play a vital role in the pathophysiology of severe acute respiratory syndrome-coronavirus-2 and middle east respiratory syndrome coronavirus diseases, but less is known about hypocalcemia in coronavirus disease 2019 (COVID-19) patients and its association with the disease severity and the final outcome. Therefore, this study was conducted with an aim to assess clinical features in COVID-19 patients having hypocalcemia and to observe its impact on COVID-19 disease severity and the final outcome. Methods In this retrospective study, consecutive COVID-19 patients of all age groups were enrolled. Demographical, clinical, and laboratory details were collected and analyzed. On the basis of albumin-corrected calcium levels, patients were classified into normocalcemic (n = 51) and hypocalcemic (n = 110) groups. Death was the primary outcome. Results The mean age of patients in the hypocalcemic group was significantly lower (p < 0.05). A significantly higher number of hypocalcemic patients had severe COVID-19 infection (92.73%; p < 0.01), had comorbidities (82.73%, p < 0.05), and required ventilator support (39.09%; p < 0.01) compared with normocalcemic patients. The mortality rate was significantly higher in the hypocalcemic patients (33.63%; p < 0.05). Hemoglobin (p < 0.01), hematocrit (p < 0.01), and red cell count (p < 0.01) were significantly lower with higher levels of absolute neutrophil count (ANC; p < 0.05) and neutrophil-to-lymphocyte ratio (NLR; p < 0.01) in the hypocalcemic patients.Albumin-corrected calcium levels had a significant positive correlation with hemoglobin levels, hematocrit, red cell count, total protein, albumin, and albumin-to-globulin ratio and a significant negative correlation with ANC and NLR. Conclusion The disease severity, ventilator requirement, and mortality were considerably higher in hypocalcemic COVID-19 patients.
Background: Calcium has been shown to have a vital role in the pathophysiology of SARS-CoV and MERS-CoV diseases but less is known about hypocalcemia in COVID-19 patients and its association with the disease severity and the final outcome. Therefore, this study was conducted with an aim to assess the clinical features in the COVID-19 patients having hypocalcemia and to observe its impact on COVID-19 disease severity and final outcome.Method: In this retrospective study, consecutive COVID-19 patients of all age groups were enrolled. Demographical, clinical and laboratory details were collected and analysed. On the basis of albumin-corrected calcium level patients were classified into normocalcemic (n=51) and hypocalcemic (n=110). Death was the primary outcome. Results: The mean age of hypocalcemic were significantly lower (p<0.05). A significantly higher number of normocalcemic patients had severe COVID-19 disease(92.73%, p<0.01), had comorbidities (82.73%, p<0.05) and required ventilator support(39.09%, p<0.01)compared to the hypocalcemic patients. The mortality rate was significantly higher (33.63%, p<0.05) in the hypocalcemic patients when compared with the normocalcemic patients (15.69%). Haemoglobin (p<0.01), hematocrit (p<0.01) and red cell count (p<0.01) were significantly lower with higher levels of absolute neutrophil count (<0.05) and neutrophil to lymphocyte ratio (p<0.01) in the hypocalcemic patients. Albumin-corrected calcium level had a significant positive correlation with haemoglobin level, haematocrit, red cell count, total protein, albumin and albumin to globulin ratio and a significant negative correlation with absolute neutrophil count and neutrophil to lymphocyte ratio.Conclusion: The disease severity, ventilator requirement and mortality were considerably higher in hypocalcemic COVID-19 patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.