The nematode Caenorhabditis briggsae is an emerging model organism that allows evolutionary comparisons with C. elegans and exploration of its own unique biological attributes. To produce a high-resolution C. briggsae recombination map, recombinant inbred lines were generated from reciprocal crosses between two strains and genotyped at over 1,000 loci. A second set of recombinant inbred lines involving a third strain was also genotyped at lower resolution. The resulting recombination maps exhibit discrete domains of high and low recombination, as in C. elegans, indicating these are a general feature of Caenorhabditis species. The proportion of a chromosome's physical size occupied by the central, low-recombination domain is highly correlated between species. However, the C. briggsae intra-species comparison reveals striking variation in the distribution of recombination between domains. Hybrid lines made with the more divergent pair of strains also exhibit pervasive marker transmission ratio distortion, evidence of selection acting on hybrid genotypes. The strongest effect, on chromosome III, is explained by a developmental delay phenotype exhibited by some hybrid F2 animals. In addition, on chromosomes IV and V, cross direction-specific biases towards one parental genotype suggest the existence of cytonuclear epistatic interactions. These interactions are discussed in relation to surprising mitochondrial genome polymorphism in C. briggsae, evidence that the two strains diverged in allopatry, the potential for local adaptation, and the evolution of Dobzhansky-Muller incompatibilities. The genetic and genomic resources resulting from this work will support future efforts to understand inter-strain divergence as well as facilitate studies of gene function, natural variation, and the evolution of recombination in Caenorhabditis nematodes.
The nematode (worm) Caenorhabditis elegans is one of the most widely studied organisms for biomedical research. Currently, C. elegans assays are performed either on petri dishes, 96-well plates or using pneumatically controlled microfluidic devices. In this work, we demonstrate that the electric field can be used as a powerful stimulus to control movement of worms in a microfluidic environment. We found that this response (termed electrotaxis) is directional, fully penetrant and highly sensitive. The characterization of electrotaxis revealed that it is mediated by neuronal activity that varies with the age and size of animals. Although the speed of swimming is unaffected by changes in the electric field strength and direction, our results show that each developmental stage responds to a specific range of electric field with a specific speed. Finally, we provide evidence that the exposure to the electric field has no discernible effect on the ability of animals to survive and reproduce. Our method has potential in precisely controlling, directing, and transporting worms in an efficient and automated manner. This opens up significant possibilities for high-throughput screening of C. elegans for drug discovery and other applications.
The small ubiquitin-like modifier (SUMO) modification alters the subcellular distribution and function of its substrates. Here we show the major role of SUMO during the development of the Caenorhabditis elegans reproductive system. smo-1 deletion mutants develop into sterile adults with abnormal somatic gonad, germ line, and vulva. SMO-1ϻGFP reporter is highly expressed in the somatic reproductive system. smo-1 animals lack a vulval-uterine connection as a result of impaired ventral uterine -cell differentiation and anchor cell fusion. Mutations in the LIN-11 LIM domain transcription factor lead to a uterine phenotype that resembles the smo-1 phenotype. LIN-11 is sumoylated, and its sumoylation is required for its activity during uterine morphogenesis. Expression of a SUMO-modified LIN-11 in the smo-1 background partially rescued -cell differentiation and retained LIN-11 in nuclear bodies. Thus, our results identify the reproductive system as the major SUMO target during postembryonic development and highlight LIN-11 as a physiological substrate whose sumoylation is associated with the formation of a functional vulval-uterine connection.[Keywords: SUMO; somatic gonad; Supplemental material is available at http://www.genesdev.org. (Schwarz et al. 1998). SUMO conjugation has been shown to affect subcellular localization of the modified substrate, thereby affecting its activity and stability (Matunis et al. 1996;Mahajan et al. 1997; Muller at al. 1998). Several transcription factors are modified by sumoylation. Whereas SUMO modification negatively regulates the androgen receptor, SP3, c-Jun, and p53 (Gostissa et al. 1999; Muller et al. 2000;Poukka et al. 2000;Schmidt and Muller 2002), sumoylation of the glucocorticoid receptor increases its transcriptional activities (LeDrean et al. 2002). Sumoylation also affects transcriptional activities indirectly. For example, SUMO conjugation to class II histone deacetylase impairs its transcription-repressing function (Kirsch et al. 2002). Alternatively, sumoylation has also been shown to affect nuclear and subnuclear (nucleolar or PML nuclear body) localization of regulatory proteins primarily implicated in transcriptional control (Sternsdorf et al. 1997;Pichler et al. 2002).The SUMO conjugation system is essential for viability in Saccharomyces cerevisiae (Melchoir 2000). Phenotypes observed upon aberrant sumoylation in S. cerevisiae include impaired septin ring formation, chromosomal segregation, and progression of the cell cycle through G 2 -M (Johnson and Blobel 1999). Studies in Arabidopsis suggest that the SUMO conjugation system has a role in protection against stress and/or repair of stressrelated damage (Kurepa et al. 2002). In Drosophila melanogaster, the loss-of-function mutation of semushi, the UBC9 (SUMO-conjugating enzyme) ortholog, prevents nuclear import of the transcription factor Bicoid (Bcd) and results in impaired embryogenesis (Epps and Tanda 1998).
Background: The antenna of the adult fruit fly, Drosophila melanogaster, is covered with three morphologically distinct types of olfactory sense organs. In addition, mechano-and hygro-sensitive receptors are also present on its surface. While much has been learnt about the development of peripheral nervous system in Drosophila, the mechanisms underlying the development of olfactory sensilla are just beginning to be unraveled. The antennal sense organs have several properties that make them distinct from other sense organs. While each sensillum type is arranged in a well-defined region of the antenna, the position of an individual sensillum is not fixed. The development of these sense organs appears to combine an initial step of cell recruitment, as in photoreceptors, followed by cell lineage mechanisms, as in the development of other external sense organs. The earliest step in development, the selection of a sensory organ precursor, involves the interaction of proneural and neurogenic genes. The proneural gene for the antennal sense organs has been elusive so far.
The analysis of cell fate patterning during the vulval development of Caenorhabditis elegans has relied mostly on the direct observation of cell divisions and cell movements (cell lineage analysis). However, reconstruction of the developing vulva from EM serial sections has suggested seven different cell types (vulA, vulB1, vulB2, vulC, vulD, vulE, and vulF), many of which cannot be distinguished based on such observations. Here we report the vulval expression of seven genes, egl-17, cdh-3, ceh-2, zmp-1, B0034.1, T04B2.6 and F47B8.6 based on gfp, cfp and yfp (green fluorescent protein and color variants) reporter fusions. Each gene expresses in a specific subset of vulval cells, and is therefore useful as a marker for vulval cell fates. Together, expressions of markers distinguish six cell types, and reveal a strict temporal control of gene expression in the developing vulva.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.