This paper summarizes the research work incorporated in the exploration of the potential of swirling in CI Engine and designing of a new mechanism, particularly at inlet, to deliver it to improve the in-cylinder air characteristics to eventually improve mixing and combustion process to improve the engine performance.The research is concentrated on the measures to be done on engine geometry so as to not only deliver advantage to any specific fuel. According to the CI combustion theory, better engine performance may be achieved with Higher Viscous Fuel by improving the in-cylinder air-fuel mixing by increasing the swirl (rotation of air view from top of the cylinder) and tumble (rotation of air view from front of the cylinder) of in-cylinder air inside the fuel-injected region. The proposed inlet component is embedded with airfoil and is suitably designed after being iterated from four steps. The deciding factors of shape and orientation of these airfoils are height, chord length and number of blades. The preliminary assessment of the proposed component is performed on a CFD code using incompressible Navier-stokes with k-epsilon turbulence modeling. The 3D cold flow IC engine simulation is conducted on COSMOS and ANSYS Fluent. The validation of the results of in-cylinder airflow characteristics from simulations are compared with other related research works.This paper is the first in series of our research on Diesel Engine. The experimental validation of the proposed component is currently going-on and would be presented in the next publication. The results show that the better mixing of fuel is achieved and the concentration of CO and Unburned Hydrocarbons is also reduced.The analysis is done for 5 load variations namely 20%, 40%, 60%, 80%, and 100%; with and without ASD. Figure 17. Kirloskar TAF-1 Diesel Engine
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.