International audienceOff late security problems related to smart cards have seen a significant rise and the risks of the attack are of deep concern for the industries. In this context, smart card industries try to overcome the anomaly by implementing various countermeasures. In this paper we discuss and present a powerful attack based on the vulnerability of the linker which could change the correct byte code into malicious one. During the attack, the linker interprets the instructions as tokens and are able to resolve them. Later we propose a countermeasure which scrambles the instructions of the method byte code with the Java Card Program Counter (jpc). Without the knowledge of jpc used to decrypt the byte code, an attacker cannot execute any malicious byte code. By this way we propose security interoperability for different Java Card platforms
International audienceOne of the challenges for smart card deployment is the security interoperability. A smart card resistant to an attack on a given platform should be able to guarantee the same behavior on another platform. But the current implementations do not comply with this requirement. In order to improve such standardization we propose a framework based on annotations with an external pre-processing to switch the Java Card Virtual Machine (JCVM) into a secure mode by activating a set of countermeasures. An example has been proposed in this paper for implementing a countermeasure against type confusion with a fault attack. Smart cards are often the target of software, hardware or combined attacks. In recent days most of the attacks are based on fault injection which can modify the behavior of applications loaded onto the card, changing them into mutant applications. This countermeasure requires a transformation of the original program byte codes which remain semantically equivalent. It needs a modification of the JCVM which stays backward compatible and a dedicated framework to deploy these applications. Thus, the proposed platform can resist to a fault enabled mutant
Security and attacks are two sides of the same coin in the smart card industry. Smart cards are prone to different types of attacks to gain access to the assets stored in it and that can cause security issues. It is necessary to identify and exploit these attacks and implement appropriate countermeasures to mitigate their effects. Fault attacks are one among them. They can introduce abnormal behaviour on the smart card environment. The redundancy is necessary to detect this change in their environment. In this work we propose an automatic method to obtain control flow redundancy using a security automaton to mitigate laser based fault attacks and hence implement a smart card countermeasure based on the combination of static analysis and dynamic monitoring method. This is a very cost effective approach which can identify and mitigate the effects of fault attacks in an efficient way.
International audienceIn smart card domain, attacks and countermeasures are advancing at a fast rate. In order to have a generic view of all the attacks, we propose to use a Fault Tree Analysis. This method used in safety analysis helps to understand and implement all the desirable and undesirable events existing in this domain. We apply this method to Java Card vulnerability analysis. We define the properties that must be ensured: integrity and confidentiality of smart card data and code. By modeling the conditions, we discovered new attack paths to get access to the smart card contents. Then we introduce a new security api which is proposed to mitigate the undesirable events defined in the tree models
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.