A closer look at centromeres
Centromeres are key for anchoring chromosomes to the mitotic spindle, but they have been difficult to sequence because they can contain many repeating DNA elements. These repeats, however, carry regularly spaced, distinctive sequence markers because of sequence heterogeneity between the mostly, but not completely, identical DNA sequence repeats. Such differences aid sequence assembly. Naish
et al
. used ultra-long-read DNA sequencing to establish a reference assembly that resolves all five centromeres in the small mustard plant
Arabidopsis
. Their view into the subtly homogenized world of centromeres reveals retrotransposons that interrupt centromere organization and repressive DNA methylation that excludes centromeres from meiotic crossover repair. Thus,
Arabidopsis
centromeres evolve under the opposing forces of sequence homogenization and retrotransposon disruption. —PJH
BackgroundGene bodies of vertebrates and flowering plants are occupied by the histone variant H3.3 and DNA methylation. The origin and significance of these profiles remain largely unknown. DNA methylation and H3.3 enrichment profiles over gene bodies are correlated and both have a similar dependence on gene transcription levels. This suggests a mechanistic link between H3.3 and gene body methylation.ResultsWe engineered an H3.3 knockdown in Arabidopsis thaliana and observed transcription reduction that predominantly affects genes responsive to environmental cues. When H3.3 levels are reduced, gene bodies show a loss of DNA methylation correlated with transcription levels. To study the origin of changes in DNA methylation profiles when H3.3 levels are reduced, we examined genome-wide distributions of several histone H3 marks, H2A.Z, and linker histone H1. We report that in the absence of H3.3, H1 distribution increases in gene bodies in a transcription-dependent manner.ConclusionsWe propose that H3.3 prevents recruitment of H1, inhibiting H1’s promotion of chromatin folding that restricts access to DNA methyltransferases responsible for gene body methylation. Thus, gene body methylation is likely shaped by H3.3 dynamics in conjunction with transcriptional activity.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-017-1221-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.