Bladder cancer is a highly recurrent disease in need of novel, durable treatment strategies. This study assessed the ability of an intravesical immunotherapy composed of a coformulation of the biopolymer chitosan with interleukin-12 (CS/IL-12) to induce systemic adaptive tumor-specific immunity. Intravesical CS/IL-12 immunotherapy was used to treat established orthotopic MB49 and MBT-2 bladder tumors. All mice receiving intravesical CS/IL-12 immunotherapy experienced high cure rates of orthotopic disease. To investigate the durability and extent of the resultant adaptive immune response, cured mice were rechallenged both locally (intravesically) and distally. Cured mice rejected 100% of intravesical tumor rechallenges and 50–100% of distant subcutaneous rechallenges in a tumor-specific manner. The ability of splenocytes from cured mice to lyse targets in a tumor-specific manner was assessed in vitro, revealing that lytic activity of splenocytes from cured mice was robust and tumor-specific. Protective immunity was durable, lasting for at least 18 months after immunotherapy. In an advanced bladder cancer model, intravesical CS/IL-12 immunotherapy controlled simultaneous orthotopic and subcutaneous tumors in 70% of treated mice. Intravesical CS/IL-12 immunotherapy creates a robust and durable tumor-specific adaptive immune response against bladder cancer. The specificity, durability and potential of this therapy to treat both superficial and advanced disease are deserving of consideration for clinical translation.
Glycosaminoglycans (GAGs), especially heparin and heparan sulfate (HS), modulate the functions of numerous cytokines. The aims of this multidisciplinary research were to characterize heparin binding to interleukin-12 (IL-12) and determine the mechanism(s) by which heparin influences IL-12 bioactivity. Heparin and HS were found to bind human IL-12 (hIL-12) with low micromolar affinity and increase hIL-12 bioactivity by more than 6-fold. Conversely, other GAGs did not demonstrate significant binding, nor did their addition affect hIL-12 bioactivity. Biophysical studies demonstrated that heparin induced only minor conformational changes while size-exclusion chromatography and small angle X-ray scattering studies indicated that heparin induced dimerization of hIL-12. Heparin modestly protected hIL-12 from proteolytic degradation, however, this was not a likely mechanism for increased cytokine activity in vitro. Flow cytometry studies revealed that heparin increased the amount of hIL-12 bound to cell surfaces. Heparin also facilitated hIL-12 binding and signaling in cells in which both hIL-12 receptor subunits were functionally deleted. Results of this study demonstrate a new role for heparin in modulating the biological activity of IL-12.
Metastasis accounts for approximately 90% of breast cancer-related deaths. Therefore, novel approaches which prevent or control breast cancer metastases are of significant clinical interest. Interleukin-12 (IL-12)-based immunotherapies have shown promise in controlling metastatic disease, yet modest responses and severe toxicities due to systemic administration of IL-12 in early trials have hindered clinical application. We hypothesized that localized delivery of IL-12 co-formulated with chitosan (chitosan/IL-12) could elicit tumor-specific immunity and provide systemic protection against metastatic breast cancer while minimizing systemic toxicity. Chitosan is a biocompatible polysaccharide derived primarily from the exoskeletons of crustaceans. In a clinically relevant resection model, mice bearing spontaneously metastatic 4T1 mammary adenocarcinomas received intratumoral injections of chitosan/IL-12, or appropriate controls, prior to tumor resection. Neoadjuvant chitosan/IL-12 immunotherapy resulted in long-term tumor-free survival in 67% of mice compared to only 24% or 0% of mice treated with IL-12 alone or chitosan alone, respectively. Antitumor responses following chitosan/IL-12 treatment were durable and provided complete protection against rechallenge with 4T1, but not RENCA renal adenocarcinoma, cells. Lymphocytes from chitosan/IL-12-treated mice demonstrated robust tumor-specific lytic activity and interferon-g production. Cell-mediated immune memory was confirmed in vivo via clinically relevant delayed-type hypersensitivity (DTH) assays. Comprehensive hematology and toxicology analyses revealed that chitosan/IL-12 induced transient, reversible leukopenia with no changes in critical organ function. Results of this study suggest that neoadjuvant chitosan/IL-12 immunotherapy prior to breast tumor resection is a promising translatable strategy capable of safely inducing to tumor-specific immunity and, in the long term, reducing breast cancer mortality due to progressive recurrences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.