Transient stability assessment (TSA) of the power system is a crucial issue with escalating demands and large operational constraints. Real-time TSA allows for deciding and monitoring of the relevant preventive/corrective control actions depending on the dynamic behavior of the system components. To assess this, coherency of generating machines is to be found. After determination of the coherent machines, any corrective or preventive action can be initiated by the system operator to maintain stability of the system during occurrence of any severe contingency. e Transient Severity Index (TSI) introduced in this paper has proven to be an interesting alternative for determining generator coherency. Furthermore, the numerical values of this index are employed to construct a supervised learning-based classifier and the ranking method with the help of system load and generation as input features. is framework employs the support vector machine (SVM) to perform the ranking of the generators based on severity and classify them into vulnerable and nonvulnerable machines. e results are validated on the IEEE 10generator, 39-bus test (New England) system. It is observed that the proposed index and the supervised learning engine give satisfactory results and both are aligned with the published approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.