Drug addiction is a chronic brain-based disorder that affects a person's behavior and leads to an inability to control drug usage. Ubiquitous physiological sensing technologies to detect illicit drug use have been well studied and understood for different types of drugs. However, we currently lack the ability to continuously and passively measure the user state in ways that might shed light on the complex relationships between cocaine-induced subjective states (e.g., craving and euphoria) and compulsive drug-seeking behavior. More specifically, the applicability of wearable sensors to detect drug-related states is underexplored. In the current work, we take an initial step in the modeling of cocaine craving, euphoria and drug-seeking behavior using electrocardiographic (ECG) and respiratory signals unobtrusively collected from a wearable chest band. Ten experienced cocaine users were studied using a human laboratory paradigm of self-regulated (i.e., "binge") cocaine administration, during which self-reported visual analog scale (VAS) ratings of cocaine-induced subjective effects (i.e., craving and euphoria) and behavioral measures of drug-seeking behavior (i.e., button clicks for drug infusions) are collected. Our results are encouraging and show that self-reported VAS Craving scores are predicted with a normalized root-mean-squared error (NRMSE) of 17.6% and a Pearson correlation coefficient of 0.49. Similarly, for VAS Euphoria prediction, an NRMSE of 16.7% and a Pearson correlation coefficient of 0.73 were achieved. We further analyze the relative importance of different morphology-related ECG and respiratory features for craving and euphoria prediction. Demographic factor analysis reveals how one single factor (i.e., average dollar ($) per cocaine use) can help to further boost the performance of our craving and euphoria models. Lastly, we model drug-seeking behavior using cardiac and respiratory signals. Specifically, we demonstrate that the latter signals can predict participant button clicks with an F1 score of 0.80 and estimate different levels of click density with a correlation coefficient of 0.85 and an NRMSE of 17.9%.
Objective The opioid crisis in the USA remains severe during the COVID-19 pandemic, which has reduced access to evidence-based interventions. This Stage 1 randomized controlled trial (RCT) assessed the preliminary efficacy of Zoom-based Mindfulness-Oriented Recovery Enhancement (MORE) plus Just-in-Time Adaptive Intervention (JITAI) prompts to practice mindfulness triggered by wearable sensors (MORE + JITAI). Method Opioid-treated chronic pain patients ( n = 63) were randomized to MORE + JITAI or a Zoom-based supportive group (SG) psychotherapy control. Participants completed ecological momentary assessments (EMA) of craving and pain (co-primary outcomes), as well as positive affect, and stress at one random probe per day for 90 days. EMA probes were also triggered when a wearable sensor detected the presence of physiological stress, as indicated by changes in heart rate variability (HRV), at which time participants in MORE + JITAI were prompted by an app to engage in audio-guided mindfulness practice. Results EMA showed significantly greater reductions in craving, pain, and stress, and increased positive affect over time for participants in MORE + JITAI than for participants in SG. JITAI-initiated mindfulness practice was associated with significant improvements in these variables, as well as increases in HRV. Machine learning predicted JITAI-initiated mindfulness practice effectiveness with reasonable sensitivity and specificity. Conclusions In this pilot trial, MORE + JITAI demonstrated preliminary efficacy for reducing opioid craving and pain, two factors implicated in opioid misuse. MORE + JITAI is a promising intervention that warrants investigation in a fully powered RCT. Preregistration This study is registered on ClinicalTrials.gov (NCT04567043).
Opioid use disorder is one of the most pressing public health problems of our time. Mobile health tools, including wearable sensors, have great potential in this space, but have been underutilized. Of specific interest are digital biomarkers, or end-user generated physiologic or behavioral measurements that correlate with health or pathology. The current manuscript describes a longitudinal, observational study of adult patients receiving opioid analgesics for acute painful conditions. Participants in the study are monitored with a wrist-worn E4 sensor, during which time physiologic parameters (heart rate/variability, electrodermal activity, skin temperature, and accelerometry) are collected continuously. Opioid use events are recorded via electronic medical record and self-report. Three-hundred thirty-nine discreet dose opioid events from 36 participant are analyzed among 2070 h of sensor data. Fifty-one features are extracted from the data and initially compared pre- and post-opioid administration, and subsequently are used to generate machine learning models. Model performance is compared based on individual and treatment characteristics. The best performing machine learning model to detect opioid administration is a Channel-Temporal Attention-Temporal Convolutional Network (CTA-TCN) model using raw data from the wearable sensor. History of intravenous drug use is associated with better model performance, while middle age, and co-administration of non-narcotic analgesia or sedative drugs are associated with worse model performance. These characteristics may be candidate input features for future opioid detection model iterations. Once mature, this technology could provide clinicians with actionable data on opioid use patterns in real-world settings, and predictive analytics for early identification of opioid use disorder risk.
Opioid use disorder is a medical condition with major social and economic consequences. While ubiquitous physiological sensing technologies have been widely adopted and extensively used to monitor day-to-day activities and deliver targeted interventions to improve human health, the use of these technologies to detect drug use in natural environments has been largely underexplored. The long-term goal of our work is to develop a mobile technology system that can identify high-risk opioid-related events (i.e., development of tolerance in the setting of prescription opioid use, return-to-use events in the setting of opioid use disorder) and deploy just-in-time interventions to mitigate the risk of overdose morbidity and mortality. In the current paper, we take an initial step by asking a crucial question: Can opioid use be detected using physiological signals obtained from a wrist-mounted sensor? Thirty-six individuals who were admitted to the hospital for an acute painful condition and received opioid analgesics as part of their clinical care were enrolled. Subjects wore a noninvasive wrist sensor during this time (1-14 days) that continuously measured physiological signals (heart rate, skin temperature, accelerometry, electrodermal activity, and interbeat interval). We collected a total of 2070 hours (≈ 86 days) of physiological data and observed a total of 339 opioid administrations. Our results are encouraging and show that using a Channel-Temporal Attention TCN (CTA-TCN) model, we can detect an opioid administration in a time-window with an F1-score of 0.80, a specificity of 0.77, sensitivity of 0.80, and an AUC of 0.77. We also predict the exact moment of administration in this time-window with a normalized mean absolute error of 8.6% and R2 coefficient of 0.85.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.