With the migration toward low supply voltages in low-power SRAM designs, threshold and supply voltage fluctuations will begin to have larger impacts on the speed and power specifications of SRAM's. We present techniques based on replica circuits which minimize the effect of operating conditions' variability on the speed and power. Replica memory cells and bitlines are used to create a reference signal whose delay tracks that of the bitlines. This signal is used to generate the sense clock with minimal slack time and control wordline pulsewidths to limit bitline swings. We implemented the circuits for two variants of the technique, one using bitline capacitance ratioing in a 1.2-m 8-kbyte SRAM, and the other using cell current ratioing in a 0.35m 2-kbyte SRAM. Both the RAM's were measured to operate over a wide range of supply voltages, with the latter dissipating 3.6 mW at 150 MHz at 1 V and 5.2 W at 980 kHz at 0.4 V.
This paper describes a half-swing pulse-mode gate family that uses reduced input signal swing without sacrificing performance. These gates are well suited for decreasing the power in SRAM decoders and write circuits by reducing the signal swing on high-capacitance predecode lines, write bus lines, and bit lines. Charge recycling between positive and negative half-swing pulses further reduces the power dissipation. These techniques are demonstrated in a 2-K 2 2 2 16-b SRAM fabricated in a 0.25-m dual-Vt Vt Vt CMOS technology that dissipates 0.9 mW operating at 1 V, 100 MHz, and room temperature. On-chip voltage samplers were used to probe internal nodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.