Here, a large-scale feasible, chromatography-free process to purge triphenylphosphine oxide (TPPO) from the crude product of Mitsunobu and Wittig reactions has been developed. Divergence in physicochemical properties like polarity and solubility of TPPO against the product was utilized to precipitate TPPO directly from the reaction mixture and eliminate by simple filtration on a kilogram scale at a pilot plant with high purity of the product.
A large-scale synthesis process of N-Boc-4-fluoro-l-proline (1) from N-Boc-4-hydroxy-l-proline methyl ester (2) using nosyl fluoride
(13) as a deoxyfluorinating agent has been developed.
An eco-friendly and large-scale feasible process using a single solvent
was developed to afford moderate yields of products with excellent
purity >99% by high-performance liquid chromatography . The key
feature
of the optimization involving chromatography-free purification and
isolation on a kilogram-scale at a pilot plant scale is described.
A series of novel 2‐substituted benzimidazole and benzoxazole derivatives as a potential antimicrobial and antioxidant agent were synthesized via coupling of N‐methyl‐o‐phenylenediamine or 2‐amino‐phenol with aromatic aldehyde and acid in the presence of polyphosphoric acid as an efficient catalyst as well as solvent by conventional method in short reaction times with excellent yield. The newly synthesized benzimidazole and benzoxazole derivatives were evaluated for antimicrobial and antioxidant activity and exhibited excellent to good activities compared to the standard drugs. Furthermore, the theoretical predictions based on molecular docking against microbial DNA gyrase could provide an insight into the plausible mechanism of action and establish a link between the observed antimicrobial activity and the binding affinity shedding light on specific thermodynamic (bonded and nonbonded) interactions governing the activity. Furthermore, the synthesized compounds were analyzed for absorption, distribution, metabolism, and excretion properties and exhibited potential properties to build up as good oral drug candidates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.