With the current pandemic of the novel coronavirus disease 2019 (COVID-19) in hand, researchers around the globe are dexterously working to find the best suitable drug candidates and overcome vaccination-related challenges, to achieve efficient control over the second surge of COVID-19. The medical consultants time and again have been reiterating the need to abide by the precautionary steps to prevent the spread of the coronavirus by maintaining social distancing when outside, sanitizing hands regularly, and wearing masks and gloves. They also suggest taking a good and hygienic meal so as to boost immunity. Indians have an inborn nature of using natural spices, food, and medicines in their daily lives. Indian researchers have paid heed to deploy compounds from natural sources to explore potential antiviral agents against COVID-19 as the chances of acquiring side effects are perceived as less, and the efficacy of phytochemicals from medicinal plants is sometimes greater when compared to their synthetic counterparts. In the present study, we performed an in silico molecular docking and molecular dynamic simulation analysis of screened phytochemicals from a comprehensive list of Ayurvedic herbs/functional foods that are present in natural food products against key receptor proteins of severe acute respiratory syndrome coronavirus 2. We found that Aegle marmelos, Vetiveria zizanoides, Moringaolifera, and Punica granatum have antiviral potential to prevent coronavirus infection in the populace.
The COVID-19 pandemic has posed a significant threat to human health due to the lack of drugs that can potentially act against SARS-CoV -2. Also, even after the emergency approval of WHO, the vaccines’ efficacy is still a question, and people are getting reinfections. Previous studies have demonstrated the efficacy of traditional medicinal plants against influenza and SARS coronavirus. The present article aims to review potential phytochemicals from Indian medicinal plants that may be used against SARS-CoV-2. Articles published in the English language between 1992 and 2021 were retrieved from Embase, PubMed, and Google scholar using relevant keywords, and the scientific literature on efficacies of Indian medicinal plants against SARS-CoV and influenza virus were analyzed. The initial search revealed 1304 studies, but, on subsequent screening, 115 eligible studies were reported. Twenty research articles investigating traditional medicinal plant extracts and metabolites against SARS-CoV and influenza A virus in in vitro and in vivo systems satisfied the search criteria. The studies reported that plant extracts and active compounds such as glycyrrhizin, 14-α-lipoyl andrographolide, and curcumin from medicinal plants such as Yashtimadhu ( Glycyrrhiza glabra), Bhunimba ( Andrographis paniculata), and Haridra ( Curcuma longa) are effective against the various phases of the virus life cycle, viz., virus-host cell attachment, viral replication, 3CL protease activity, neuraminidase activity, adsorption and penetration of the virus. As per ancient Indian literature, plants in Ayurveda possess Rasayana (revitalizing) and Jwara hara (antipyretic, anti-inflammatory) properties. This evidence may be used to conduct experimental and clinical trials to study the underlying mechanisms and efficacy of antiviral properties of Indian medicinal plants against SARS-CoV-2.
Even after one and a half years since the outbreak of COVID-19, its complete and effective control is still far from being achieved despite vaccination drives, symptomatic management with available drugs, and wider lockdowns. This has inspired researchers to screen potential phytochemicals from medicinal plants against SARS-CoV-2, adopting a bio-informatics approach. The current study aimed to assess anti-viral activity of the phytochemicals derived from Ayurvedic medicinal plants against SARS-CoV-2 drug targets [3-chymotrypsin-like protease (3CLpro) and RNA dependent RNA polymerase (RdRp)] using validated in silico methods.3D Structures of 196 phytochemicals from three Ayurvedic plants were retrieved from PubChem and KNApSAcK databases and screened for Absorption Distribution Metabolism Excretion and Toxicity(ADMET) to predict drug-likeness. The phytochemicals were subjected to molecular docking and only three showed promise: Acetovanillonewith a binding affinity of −4.7Kcal/mol with RdRp and −4.1 Kcal/mol with 3CL pro; myrtenol with equivalent values of −4.3 Kcal/mol with RdRP and −3.2 Kcal/mol with 3CLpro; and nimbochalcin with equivalent values of −5.0Kcal/mol with RdRp and −4.9 Kcal/mol with 3CLpro. Molecular dynamics simulation (50ns) analysis was made of 3CLpro and RdRp using Autodock Vina 1.1.2 software and VMD software. After ADMET analysis, 78 phytochemicals were found suitable for molecular docking. Three, namely acetovanillone, myrtenol and nimbochalcin from Picrorhiza kurroa, Azadirachta indica and Cyperus rotundus,respectively,exhibited good binding affinity with 3CLproand RdRp of SARS-CoV-2. Interaction analysis, molecular dynamics simulations and MM-PBSA calculations were executed for two complexes, acetovanillone_RdRp and myrtenol_3CL pro.Acetovanillone_RdRpcomplex did not display any structural change after MD simulation as compared to myrtenol_3CL pro. The overall stability of acetovanillone_6NUR was 154.7 kJ/mol, and for myrtenol_1UJ1 90.5 kJ/mol. In silico analysis revealed that acetovanillone ( Picrorhiza kurroa) and myrtenol ( Cyperus rotundus) possess anti SARS-CoV-2 activity. Further studies are needed to validate their efficacy in biological models.
Nisha Amalaki (NA), an Indian herbal formulation consisting of two herbs, Curcuma longa and Emblica officinalis, has been commonly used to treat Type 2 diabetes mellitus (T2DM). However, the pharmacological mechanism of NA remains unknown. In this study, a network pharmacology-based approach was used to explore its underlying mechanism. NA phytochemicals were collected from PubChem, KNApSAcK, IMPPAT, and ChEBI databases, and their potential targets were investigated using similarity ensemble approach (Tanimoto coefficient ≥ 0.6). A protein-protein interaction network was constructed to study the interactions among the targets and clustered into separate modules using NetworkAnalyst 3.0. A significant module (P ≤ .01) was identified, and DAVID web tool was utilized for the enrichment analysis. A total of 201 phytochemicals and 262 targets of NA were selected. Forty-five nodes of the significant module were identified as potential targets of NA. The enrichment analysis exhibited 27 biological processes and 78 pathways (P ≤ .01). Out of 45, 18 nodes were associated with T2DM as probable targets of NA. The metabolite-target-pathway network revealed that anti-diabetic effect of NA is a synergy of multi-target and multi-pathway efforts via regulation of glucose, lipid metabolism, insulin resistance, β-cell survival and proliferation, inflammation, apoptosis, and cell cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.