Figure 1: We present a deep learning based approach to estimate personalized body shape, including hair and clothing, using a single RGB camera. The shapes shown above have been calculated using only 8 input images, and re-posed using SMPL.
AbstractWe present Octopus, a learning-based model to infer the personalized 3D shape of people from a few frames (1-8) of a monocular video in which the person is moving with a reconstruction accuracy of 4 to 5mm, while being orders of magnitude faster than previous methods. From semantic segmentation images, our Octopus model reconstructs a 3D shape, including the parameters of SMPL plus clothing and hair in 10 seconds or less. The model achieves fast and accurate predictions based on two key design choices. First, by predicting shape in a canonical T-pose space, the network learns to encode the images of the person into poseinvariant latent codes, where the information is fused. Second, based on the observation that feed-forward predictions are fast but do not always align with the input images, we predict using both, bottom-up and top-down streams (one per view) allowing information to flow in both directions. Learning relies only on synthetic 3D data. Once learned, Octopus can take a variable number of frames as input, and is able to reconstruct shapes even from a single image with an accuracy of 5mm. Results on 3 different datasets demonstrate the efficacy and accuracy of our approach. Code is available at [2]. * Work partly conducted during an internship at the Real Virtual Humans group of Max Planck for Informatics.
We present Multi-Garment Network (MGN), a method to predict body shape and clothing, layered on top of the SMPL [40] model from a few frames (1-8) of a video. Several experiments demonstrate that this representation allows higher level of control when compared to single mesh or voxel representations of shape. Our model allows to predict garment geometry, relate it to the body shape, and transfer it to new body shapes and poses. To train MGN, we leverage a digital wardrobe containing 712 digital garments in correspondence, obtained with a novel method to register a set of clothing templates to a dataset of real 3D scans of people in different clothing and poses. Garments from the digital wardrobe, or predicted by MGN, can be used to dress any body shape in arbitrary poses. We will make publicly available the digital wardrobe, the MGN model, and code to dress SMPL with the garments at [1].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.