SUMMARYThis paper introduces FireWorks, a workflow software for running high-throughput calculation workflows at supercomputing centers. FireWorks has been used to complete over 50 million CPU-hours worth of computational chemistry and materials science calculations at the National Energy Research Supercomputing Center. It has been designed to serve the demanding high-throughput computing needs of these applications, with extensive support for (i) concurrent execution through job packing, (ii) failure detection and correction, (iii) provenance and reporting for long-running projects, (iv) automated duplicate detection, and (v) dynamic workflows (i.e., modifying the workflow graph during runtime). We have found that these features are highly relevant to enabling modern data-driven and high-throughput science applications, and we discuss our implementation strategy that rests on Python and NoSQL databases (MongoDB). Finally, we present performance data and limitations of our approach along with planned future work.
Point defects have a strong impact on the performance of semiconductor and insulator materials used in technological applications, spanning microelectronics to energy conversion and storage. The nature of the dominant defect types, how they vary with processing conditions, and their impact on materials properties are central aspects that determine the performance of a material in a certain application. This information is, however, difficult to access directly from experimental measurements. Consequently, computational methods, based on electronic density functional theory (DFT), have found widespread use in the calculation of point-defect properties. Here we have developed the Python Charged Defect Toolkit (PyCDT) to expedite the setup and post-processing of defect calculations with widely used DFT software. PyCDT has a user-friendly command-line interface and provides a direct interface with the Materials Project database. This allows for setting up many charged defect calculations for any material of interest, as well as post-processing and applying state-of-the-art electrostatic correction terms. Our paper serves as a documentation for PyCDT, and demonstrates its use in an application to the well-studied GaAs compound semiconductor. We anticipate that the PyCDT code will be useful as a framework for undertaking readily reproducible calculations of charged point-defect properties, and that it will provide a foundation for automated, high-throughput calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.