Heterosis (or hybrid vigor) results in a hybrid’s phenotypic superiority over its founder parents for quantitative and qualitative traits. Hybrid vigor is defined by mechanisms such as dominant complementation, over-dominance, and epistasis. Eggplant (Solanum melongena L.) is an essential vegetable crop and a good source of dietary minerals, vitamins, and anthocyanins, with a high oxygen radical absorbance capacity and low caloric value. Given the economic and nutritional significance of eggplants, breeding efforts focus on developing high-yielding varieties—mostly F1 hybrids—with important traits. Studies indicate the successful exploitation of heterosis in the eggplant for a considerable improvement with respect to quantitative traits. In this direction, estimating heterosis for yield-related traits could well be useful for examining the most beneficial hybrid mix with the exploitation of top-quality hybrid. This review examines the current perception of the breeding and molecular aspects of heterosis in eggplants and cites several studies describing the mechanisms. Rendering and combining recent genomics, epigenetic, proteomic, and metabolomics studies present new prospects towards the understanding of the regulatory events of heterosis involved in the evolution and the domestication of the eggplant ideotype.
Information regarding the stability of genotypes is critical in expanding the adaptability of released genotypes. But, this information regarding the basmati (scented) rice genotypes cultivated under north Indian conditions are not well known. Therefore, here we have evaluated the twenty-two basmati rice genotypes for stability, based on important traits, and different production system. Genotypes were evaluated for two consecutive Kharif seasons under open field conditions in a randomized complete block design (RCBD). The genotypes were evaluated under four production systems namely, transplanted rice (TPR), system of rice intensification (SRI), direct seeded rice (DSR) in both settings, i.e. wet DSR (W) and dry DSR (D). The stability of genotypes was determined via Eberhart and Russell model, additive main effects and multiplicative interaction (AMMI), and genotype × environment interaction (GGE) biplot model. The stability and adaptability studied using Eberhart and Russell model, AMMI and GGE biplot identified Basmati-370 as the most stable genotype for biological weight; Pusa RH-10 for filled spikelet; CSR-30 for spikelet Number; and Traori Basmati for test grain weight. TPR was the most desirable test environment followed by SRI and DSR (W). Further, we have identified HKR 08-417 as the most suitable genotype for all of the production systems. Overall, this study provides information regarding stable basmati rice genotypes under the north Indian conditions.
A field experiment comprising of released varieties, elite lines and hybrid under four production systems viz. Transplanted rice (TPR), Dry direct seeded rice (Dry DSR), Wet direct seeded rice (Wet DSR) and System of rice intensification (SRI) was conducted at Research farm of RRS, Kaul, CCS HAU, Hisar, Haryana during Kharif of 2014-15 and 2015-16. Present study tested and identified the basmati rice genotypes for yield and its components under System of rice intensification, Direct seeded rice (both Dry and Wet) and regular Transplanted rice system. Four characters namely, grain yield, plant height, tiller/ plant panicle length and panicle weight were recorded.Estimates of genotype x environment interaction and additive main effect were significant for all the mentioned traits. The traits viz. tiller/ plant and plant height were found proportional to grain yield. Based on AMMI biplot analysis genotypes Pusa RH 10 has been identified for SRI, while genotypes i.e. Imp Pusa Basmati-1, CSR-30, Haryana Basmati-1 and Haryana Mehak-1 were identified for Wet DSR and two genotypes Super Basmati and HKR 06-487 for Dry DSR conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.