Electrolyte solutions of 1 M concentration are typically used in lithium ion batteries (LIB) for optimal performance. However, recently, superconcentrated electrolytes have been proposed to be a promising alternative to 1 M solutions. Despite their improved stability features, application of the concentrated electrolytes is hindered by their poor transport properties. We probe EC-LiPF 6 electrolyte system for a range of concentrations: 0.06 to 4 M using molecular dynamics simulations to study the effect of concentration on transport and structural properties. Molecular structure of the solution changes with concentration from a predominantly solvent separated ion pair (SSIP) configuration at the dilute limit to an aggregate rich configuration at high concentration. Depletion of SSIPs and formation of more aggregates at higher concentrations affect the transport properties. The present work provides insights into the relation between molecular structure and performance of the electrolyte solution and suggests ways to design novel concentrated electrolytes.
Salt-concentrated electrolytes are emerging as promising electrolytes for advanced lithium ion batteries (LIBs) that can offer high energy density and improved cycle life. To further improve these electrolytes, it is essential to understand their inherent behavior at various operating conditions of LIBs. Molecular dynamics (MD) simulations are extensively used to study various properties of electrolytes and explain the associated molecular-level phenomena. In this study, we use classical MD simulations to probe the properties of the concentrated electrolyte solution of 3 mol/kg lithium hexafluorophosphate (LiPF6) salt in the propylene carbonate solvent at various temperatures ranging from 298 to 378 K. Our results reveal that the properties such as ionic diffusivity and molar conductivity of a concentrated electrolyte are more sensitive to temperature compared to that of dilute electrolytes. The residence time analysis shows that temperature affects the Li+ ion solvation shell dynamics significantly. The effect of temperature on the transport and dynamic properties needs to be accounted carefully while designing better thermal management systems for batteries made with concentrated electrolytes to garner the advantages of these electrolytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.