Small molecule potent IRAK4 inhibitors from a novel bicyclic heterocycle class were designed and synthesized based on hits identified from Aurigene’s compound library. The advanced lead compound, CA-4948, demonstrated good cellular activity in ABC DLBCL and AML cell lines. Inhibition of TLR signaling leading to decreased IL-6 levels was also observed in whole blood assays. CA-4948 demonstrated moderate to high selectivity in a panel of 329 kinases as well as exhibited desirable ADME and PK profiles including good oral bioavailability in mice, rat, and dog and showed >90% tumor growth inhibition in relevant tumor models with excellent correlation with in vivo PD modulation. CA-4948 was well tolerated in toxicity studies in both mouse and dog at efficacious exposure. The overall profile of CA-4948 prompted us to select it as a clinical candidate for evaluation in patients with relapsed or refractory hematologic malignancies including non-Hodgkin lymphoma and acute myeloid leukemia.
Interleukin-1 receptor associated kinases (IRAKs) are serine/threonine protein kinases belonging to the tyrosine-like kinase (TLK) family. IRAKs function as mediators of Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) signaling pathways and play an important role in innate immune signaling. TLR/IL-1R stimulation leads to recruitment of MYD88, an adaptor molecule, to the activated receptor complex, which then complexes with IRAK4 and activates IRAK1. TRAF6 is then activated by IRAK1 leading to NFkB activation. Recent studies have reported the occurrence of gain of function oncogenic mutation (L265P) in MYD88 in ∼30% of activated B cell diffuse large B-cell lymphoma(ABC DLBCL) and ∼90% of Waldenstrom's macroglobulinemia (WM) leading to constitutive activation of IRAK4 and NFkB pathway. Among the DLBCL subtypes (GCB, ABC DLBCL and PMBL), ABC DLBCL is the most refractory. Inhibition of constitutive IRAK4 signalling can be used as a therapeutic strategy to treat ABC DLBCL Small molecule inhibitors of IRAK4 were synthesized based on hits originating from Aurigene's compound library. Structure guided drug design approach was used to further improve the potency. Lead compounds demonstrated moderate to very high selectivity towardsIRAK4 (S35 score of 0.03) when screened against a large panel of 329 kinases. Aurigene's lead compounds have excellent PK profile and good oral bioavailability in mice, leading to good in-vivo activity in TLR4 induced cytokine release model. Selected lead compounds were tested in a OCI-Ly3 xenograft model, which has a MYD88(L265P) mutation leading to constitutive activation of IRAK4 signaling. An advanced lead compound has demonstrated excellent efficacy in OCI-Ly3 model, with tumor stasis at low doses and tumor regression at higher doses. The compound is well tolerated and has a good therapeutic window as determined in a 14 day rodent toxicity study. In summary, a selective IRAK4 inhibitor has been identified with excellent efficacy and good safety profile. Citation Format: Wesley Roy Balasubramanian, Venkateshwar Rao Gummadi, Kavitha Nellore, Subhendu Mukherjee, Sivapriya Marappan, Aravind Basavaraju, Bharathi Raja Ainan, Girish Daginakatte, Sreevalsam Gopinath, Sanjeev Giri, Thomas Antony, Shekar Chelur, Susanta Samajdar, Chetan Pandit, Murali Ramachandra. Efficacy and safety of highly selective novel IRAK4 inhibitors for treatment of ABC-DLBCL. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 4798.
Interleukin-1 receptor associated kinases (IRAKs) are serine/threonine protein kinases belonging to tyrosine-like kinase (TLK) family. The IRAK family consists of IRAK1, IRAK2, IRAK3 and IRAK4 out of which only IRAK1 and IRAK4 exhibit kinase activity. IRAKs function as mediators of Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) signaling pathways and play an important role in innate immune signaling. Recent studies have reported the occurrence of oncogenic mutations in MYD88 in 30% of activated B cell diffuse large B-cell lymphoma (ABC DLBCL) and 90% of Waldenstrom's macroglobulinemia (WM) leading to constitutive activation of the IRAK4 and NFkB pathway. Recent studies have also highlighted the association of dysregulated innate immune signaling with Myelodysplastic syndrome (MDS) and Acute Myeloid leukaemia (AML). TLRs and their associated signal transducers are frequently overexpressed and/or constitutively activated in MDS. Overexpression and activation of IRAK1 is observed in AML. Thus IRAKs are attractive therapeutic targets for treatment of tumors with altered innate immune signaling such as ABC DLBCL and AML. We have designed, synthesized and tested small molecule inhibitors of IRAK4 based on hits originating from Aurigene's compound library. We have identified a series of novel bicyclic heterocycles as potent inhibitors of IRAK-4 with moderate to very high selectivity (S35 score = 0.03) in a 329 kinase panel. Lead compounds were profiled in proliferation and mechanistic assays (p-IRAK1 and p-TAK1 inhibition) in appropriate ABC DLBCL/AML cell lines. Aurigene lead compounds demonstrate potent inhibition of cellular proliferation with a good correlation to inhibition of phosphorylation of signaling intermediates in mechanistic assays. Lead compounds exhibit excellent PK profile and good oral bioavailability in mice. Preliminary in-vitro toxicology studies indicate a clean safety profile. Selected compounds demonstrate excellent in-vivo efficacy in relevant tumor models with >90% tumor growth inhibition and good in-vivo PD modulation. In summary, a series of potent and selective IRAK4 inhibitors have been discovered and are being evaluated for treatment of cancers with dysregulated innate immune signaling. Citation Format: Venkateshwar Rao, Wesley Roy Balasubramanian, Kavitha Nellore, Sivapriya Marappan, Aravind Basavaraju, Bharathi Raja Ainan, Girish Daginakatte, Sreevalsam Gopinath, Sanjeev Giri, Thomas Antony, Shekar Chelur, Susanta Samajdar, Chetan Pandit, Murali Ramachandra. Efficacy of novel IRAK4 inhibitors in ABC-DLBCL and AML models. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2015 Nov 5-9; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2015;14(12 Suppl 2):Abstract nr C191.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.