In the past years, the usage of internet and quantity of digital data generated by large organizations, firms, and governments have paved the way for the researchers to focus on security issues of private data. This collected data is usually related to a definite necessity. For example, in the medical field, health record systems are used for the exchange of medical data. In addition to services based on users' current location, many potential services rely on users' location history or their spatial-temporal provenance. However, most of the collected data contain data identifying individual which is sensitive. With the increase of machine learning applications around every corner of the society, it could significantly contribute to the preservation of privacy of both individuals and institutions. This chapter gives a wider perspective on the current literature on privacy ML and deep learning techniques, along with the non-cryptographic differential privacy approach for ensuring sensitive data privacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.