This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Diabetic foot ulcers (DFU) are a growing concern worldwide as they pose complications in routine clinical practices such as diagnosis and management. Bacterial interactions on the skin surface are vital to the pathophysiology of DFU and may control delayed wound healing. The microbiota from our skin directly regulates cutaneous health and disease by interacting with the numerous cells involved in the wound healing mechanism. Commensal microbiota, in particular, interact with wound-repairing skin cells to enhance barrier regeneration. The observed microbes in DFU include Staphylococcus. Streptococcus, Corynebacterium, Pseudomonas, and several anaerobes. Skin commensal microbes, namely S. epidermidis, can regulate the gamma delta T cells and induce Perforin-2 expression. The increased expression of Perforin-2 by skin cells destroyed S. aureus within the cells, facilitating wound healing. Possible crosstalk between the human commensal microbiome and different cell types involved in cutaneous wound healing promotes the immune response and helps to maintain the barrier function in humans. Wound healing is a highly well-coordinated, complex mechanism; it can be devastating if interrupted. Skin microbiomes are being studied in relation to the gut-skin axis along with their effects on dermatologic conditions. The gut-skin axis illustrates the connection wherein the gut can impact skin health due to its immunological and metabolic properties. The precise mechanism underlying gut-skin microbial interactions is still unidentified, but the immune and endocrine systems are likely to be involved. Next-generation sequencing and the development of bioinformatics pipelines may considerably improve the understanding of the microbiome-skin axis involved in diabetic wound healing in a much more sophisticated way. We endeavor to shed light on the importance of these pathways in the pathomechanisms of the most prevalent inflammatory conditions including the diabetes wound healing, as well as how probiotics may intervene in the gut-skin axis.
The gut microbiome is a complex microbial community, recognized for its potential role in physiology, health, and disease. The available evidence supports the role of gut dysbiosis in pancreatic disorders, including acute pancreatitis (AP). In AP, the presence of gut barrier damage resulting in increased mucosal permeability may lead to translocation of intestinal bacteria, necrosis of pancreatic and peripancreatic tissue, and infection, often accompanied by multiple organ dysfunction syndrome. Preserving gut microbial homeostasis may reduce the systemic effects of AP. A growing body of evidence suggests the possible involvement of the gut microbiome in various pancreatic diseases, including AP. This review discusses the possible role of the gut microbiome in AP. It highlights AP treatment and supplementation with prebiotics, synbiotics, and probiotics to maintain gastrointestinal microbial balance and effectively reduce hospitalization, morbidity and mortality in an early phase. It also addresses novel therapeutic areas in the gut microbiome, personalized treatment, and provides a roadmap of human microbial contributions to AP that have potential clinical benefit.
Leptin is an important hormone that has potent effects on appetite and body weight. The regulation of leptin gene expression and secretion by corticosteroids and insulin was studied in the rat. Adrenalectomy resulted in a significant reduction in leptin gene expression and secretion. The reduction was corrected by hormonal replacement with corticosterone pellets, showing that normal levels of circulating corticosteroids are required to maintain leptin expression and secretion in the body. Chronic treatment with dexamethasone (DEX) over 3 wk did not significantly increase leptin gene expression and secretion, contrary to earlier reports using shorter treatment paradigms. The profound weight loss associated with chronic DEX treatment may have abrogated the direct stimulatory effect of DEX on leptin gene expression and secretion, indicating a possible crosstalk between corticosteroids and leptin in the regulation of body weight. Shorter-term treatment of animals with DEX (3.7 micrograms/g body wt; 24 h) increased leptin gene expression and secretion about 2-fold and 1.4-fold, respectively. The increase was independent of circulating insulin concentrations. In streptozotocin-treated rats, short-term DEX treatment increased leptin gene expression and secretion about 3.5-fold and 2-fold, respectively. The data indicate that circulating leptin concentrations and adipose tissue leptin expression are dependent on corticosteroids and insulin. Although acute DEX treatment resulted in a stimulatory effect on leptin secretion and expression, chronic DEX treatment did not. The stimulatory effect of DEX on leptin is independent of circulating insulin concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.