Background: The toxic effects of many simple organic compounds stem from their biotransformation to chemically reactive metabolites which bind covalently to cellular proteins. To understand the mechanisms of cytotoxic responses it may be important to know which proteins become adducted and whether some may be common targets of multiple toxins. The literature of this field is widely scattered but expanding rapidly, suggesting the need for a comprehensive, searchable database of reactive metabolite target proteins.
Despite great advances in the efficiency of analytical and synthetic chemistry, time and available starting material still limit the number of unique compounds that can be practically synthesized and evaluated as prospective therapeutics. Chemical diversity analysis (the capacity to identify finite diverse subsets that reliably represent greater manifolds of drug-like chemicals) thus remains an important resource in drug discovery. Despite an unproven track record, chemical diversity has also been used to posit, from preliminary screen hits, new compounds with similar or better activity. Identifying diversity metrics that demonstrably encode bioactivity trends is thus of substantial potential value for intelligent assembly of targeted screens. This paper reports novel algorithms designed to simultaneously reflect chemical similarity or diversity trends and apparent bioactivity in compound collections. An extensive set of descriptors are evaluated within large NCI screening data sets according to bioactivity differentiation capacities, quantified as the ability to co-localize known active species into bioactive-rich K-means clusters. One method tested for descriptor selection orders features according to relative variance across a set of training compounds, and samples increasingly finer subset meshes for descriptors whose exclusion from the model induces drastic drops in relative bioactive colocalization. This yields metrics with reasonable bioactive enrichment (greater than 50% of all bioactive compounds collected into clusters or cells with significantly enriched active/inactive rates) for each of the four data sets examined herein. A second method replaces variance by an active/ inactive divergence score, achieving comparable enrichment via a much more efficient search process. Combinations of the above metrics are tested in 2D rectilinear diversity models, achieving similarly successful colocalization statistics, with metrics derived from the active/inactive divergence score typically outperforming those selected from the variance criterion and computed from the DiverseSolutions software.
The magnitude of the challenges in preclinical drug discovery is evident in the large amount of capital invested in such efforts in pursuit of a small static number of eventually successful marketable therapeutics. An explosion in the availability of potentially drug-like compounds and chemical biology data on these molecules can provide us with the means to improve the eventual success rates for compounds being considered at the preclinical level, but only if the community is able to access available information in an efficient and meaningful way. Thus, chemical database resources are critical to any serious drug discovery effort. This paper explores the basic principles underlying the development and implementation of chemical databases, and examines key issues of how molecular information may be encoded within these databases so as to enhance the likelihood that users will be able to extract meaningful information from data queries. In addition to a broad survey of conventional data representation and query strategies, key enabling technologies such as new context-sensitive chemical similarity measures and chemical cartridges are examined, with recommendations on how such resources may be integrated into a practical database environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.