To further extend the applicability of wearable sensors, methods for accurately extracting subtle psychological information from the sensor data are required. However, accessing subjective information in everyday life, such as cognitive load, remains challenging. To bring consensus on methods for cognitive load monitoring, a machine learning challenge is organized. The participants developed machine learning methods for cognitive load classification using wrist-worn physiological sensors' data, namely heart rate, R-R intervals, skin conductance, and skin temperature. The data from subjects solving cognitive tasks of varying difficulty was used for the challenge. This article presents a systematic comparison and multistrategic performance evaluation of the thirteen methods submitted to this challenge. A systematic comparison of preprocessing, classifiers, and implementation techniques is presented. Performance variations for different task difficulty levels, different subjects, and different experiment periods are evaluated. The results indicate that the most robust methods used multimodal sensor data, classical classification approaches such as decision trees and support vector machines or their ensembles, and Bayesian hyperparameter optimization for hyperparameter tuning. The most accurate models used handcrafted features that are further selected using sequential backward floating search and evaluated using stratified person-aware crossvalidation strategy. Moreover, the results indicated better classification performance for specific test subjects, the tasks with the highest difficulty, and in some cases, the time elapsed since the start of the experiment. This dependency is likely due to model overfitting or due to the subjective nature of the psychophysiological process. The intersubject variability in responses is challenging to be captured through objective binary labels for cognitive load, thereby warranting more sophisticated annotation approaches.
An automatic emotion recognition system can serve as a fundamental framework for various applications in daily life from monitoring emotional well-being to improving the quality of life through better emotion regulation. Understanding the process of emotion manifestation becomes crucial for building emotion recognition systems. An emotional experience results in changes not only in interpersonal behavior but also in physiological responses. Physiological signals are one of the most reliable means for recognizing emotions since individuals cannot consciously manipulate them for a long duration. These signals can be captured by medical-grade wearable devices, as well as commercial smart watches and smart bands. With the shift in research direction from laboratory to unrestricted daily life, commercial devices have been employed ubiquitously. However, this shift has introduced several challenges, such as low data quality, dependency on subjective self-reports, unlimited movementrelated changes, and artifacts in physiological signals. This tutorial provides an overview of practical aspects of emotion Manuscript
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.