BackgroundIn view of the recent upsurge in the phenomenon of therapeutic failure, drug resistance in
Leishmania
, developed under natural field conditions, has become a great concern yet little understood. Accordingly, the study of determinants of antimony resistance is urgently warranted. Efflux transporters have been reported in
Leishmania
but their role in clinical resistance is still unknown. The present study was designed to elucidate the mechanism of natural antimony resistance in L. donovani field isolates by analyzing the functionality of efflux pump(s) and expression profiles of known genes involved in transport and thiol based redox metabolismMethodology/Principal FindingsWe selected 7 clinical isolates (2 sensitive and 5 resistant) in addition to laboratory sensitive reference and SbIII resistant mutant strains for the present study. Functional characterization using flow cytometry identified efflux pumps that transported substrates of both P-gp and MRPA and were inhibited by the calmodulin antagonist trifluoperazine. For the first time, verapamil sensitive efflux pumps for rhodamine 123 were observed in L. donovani that were differentially active in resistant isolates. RT-PCR confirmed the over-expression of MRPA in isolates with high resistance index only. Resistant isolates also exhibited consistent down regulation of AQP1 and elevated intracellular thiol levels which were accompanied with increased expression of ODC and TR genes. Interestingly, γ-GCS is not implicated in clinical resistance in L. donovani isolates.Conclusions/SignificanceHere we demonstrate for the first time, the role of P-gp type plasma membrane efflux transporter(s) in antimony resistance in L. donovani field isolates. Further, decreased levels of AQP1 and elevated thiols levels have emerged as biomarkers for clinical resistance.
Chaperonins are a class of molecular chaperons that encapsulate nascent or stress‐denatured proteins and assist their intracellular assembly and folding in an ATP‐dependent manner. The ubiquitous eukaryotic chaperonin, TCP1 ring complex is a hetero‐oligomeric complex comprising two rings, each formed of eight subunits that may have distinct substrate recognition and ATP hydrolysis properties. In Leishmania, only the TCP1γ subunit has been cloned and characterized. It exhibited differential expression at various growth stages of promastigotes. In the present study, we expressed the TCP1γ subunit in Escherichia coli to investigate whether it forms chaperonin‐like complexes and plays a role in protein folding. LdTCP1γ formed high‐molecular‐weight complexes within E. coli cells as well as in Leishmania cell lysates. The recombinant protein is arranged into two back‐to‐back rings of seven subunits each, as predicted by homology modelling and observed by negative staining electron microscopy. This morphology is consistent with that of the oligomeric double‐ring group I chaperonins found in mitochondria. The LdTCP1γ homo‐oligomeric complex hydrolysed ATP, and was active as assayed by luciferase refolding. Thus, the homo‐oligomer performs chaperonin reactions without partner subunit(s). Further, co‐ immunoprecipitation studies revealed that LdTCP1γ interacts with actin and tubulin proteins, suggesting that the complex may have a role in maintaining the structural dynamics of the cytoskeleton of parasites.
The development of new therapeutic leads against leishmaniasis relies primarily on screening of a large number of compounds on multiplication of clinically irrelevant transgenic promastigotes. The advent of the successful in vitro culture of axenic amastigotes allows the development of transgenic axenic amastigotes as a primary screen which can test compounds in a high throughput mode like promastigotes, still representative of the clinically relevant mammalian amastigotes stage. The present study reports the development of luciferase-tagged axenic amastigotes of Leishmania donovani, the causative agent of Indian Kala-azar, for in vitro drug screening. Luciferase expressing promastigotes were transformed to axenic amastigotes at a low pH and high temperature without the loss of luciferase expression. As compared to transgenic promastigotes, the luciferase expressing axenic amastigotes exhibited more sensitivity to antileishmanial drugs, particularly to pentavalent antimony (~2.8-fold) and also to the test compounds. Hence, the developed luciferase expressing axenic amastigotes make an ideal choice for high throughput drug screening for antileishmanial compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.