A Few algorithms were actualized by the analysts for performing clustering of data streams. Most of these algorithms require that the number of clusters (K) has to be fixed by the customer based on input data and it can be kept settled all through the clustering process. Stream clustering has faced few difficulties in picking up K. In this paper, we propose an efficient approach for data stream clustering by embracing an Improved Differential Evolution (IDE) algorithm. The IDE algorithm is one of the quick, powerful and productive global optimization approach for programmed clustering. In our proposed approach, we additionally apply an entropy based method for distinguishing the concept drift in the data stream and in this way updating the clustering procedure online. We demonstrated that our proposed method is contrasted with Genetic Algorithm and identified as proficient optimization algorithm. The performance of our proposed technique is assessed and cr eates the accuracy of 92.29%, the precision is 86.96%, recall is 90.30% and F-measure estimate is 88.60%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.