Occlusive vascular disease is a widespread abnormality leading to lethal or debilitating outcomes such as myocardial infarction and stroke. It is part of atherosclerosis and is evoked by clinical procedures including angioplasty and grafting of saphenous vein in bypass surgery. A causative factor is the switch in smooth muscle cells to an invasive and proliferative mode, leading to neointimal hyperplasia. Here we reveal the importance to this process of TRPC1, a homolog of Drosophila transient receptor potential. Using 2 different in vivo models of vascular injury in rodents we show hyperplasic smooth muscle cells have upregulated TRPC1 associated with enhanced calcium entry and cell cycle activity. Neointimal smooth muscle cells after balloon angioplasty of pig coronary artery also express TRPC1. Furthermore, human vein samples obtained during coronary artery bypass graft surgery commonly exhibit an intimal structure containing smooth muscle cells that expressed more TRPC1 than the medial layer cells. Veins were organ cultured to allow growth of neointimal smooth muscle cells over a 2-week period. To explore the functional relevance of TRPC1, we used a specific E3-targeted antibody to TRPC1 and chemical blocker 2-aminoethoxydiphenyl borate. Both agents significantly reduced neointimal growth in human vein, as well as calcium entry and proliferation of smooth muscle cells in culture. The data suggest upregulated TRPC1 is a general feature of smooth muscle cells in occlusive vascular disease and that TRPC1 inhibitors have potential as protective agents against human vascular failure.
Here we explore the activation mechanisms of human TRPC5, a putative cationic channel that was cloned from a region of the X chromosome associated with mental retardation. No basal activity was evident but activity was induced by carbachol stimulation of muscarinic receptors independently of Ca 2+ release. This is 'receptor activation', as described for mouse TRPC5. In addition, and in the absence of receptor stimulation, extracellular gadolinium (0.1 mM) activated TRPC5, an effect that was mimicked by 5-20 mM extracellular Ca 2+ with intracellular Ca 2+ buffered. We refer to this as 'external ionic activation'. TRPC5 was also activated by modest elevation of [Ca 2+ ] i in the absence of GTP -'calcium activation'. A putative fourth activation mechanism is a signal from depleted intracellular Ca 2+ stores. Consistent with this idea, human TRPC5 was activated by a standard store-depletion/Ca 2+ re-entry protocol, an effect that was difficult to explain by calcium activation. Multiplicity of TRPC5 activation was demonstrated in single cells and thus not dependent on heterogeneity of expression levels or cellular context. Therefore, human TRPC5 is activated by a range of stimuli, avoiding dependence on a single critical activator as in many other ion channels. One of these stimuli would seem to be a change in Ca 2+ handling by the endoplasmic reticulum.
Induction of K(Ca)3.1 (IKCa) potassium channel plays an important role in vascular smooth muscle cell proliferation. Here, we report that the gene encoding K(Ca)3.1 (KCNN4) contains a functional repressor element 1-silencing transcription factor (REST or NRSF) binding site and is repressed by REST. Although not previously associated with vascular smooth muscle cells, REST is present and recruited to the KCNN4 gene in situ. Significantly, expression of REST declines when there is cellular proliferation, showing an inverse relationship with functional K(Ca)3.1. Downregulated REST and upregulated K(Ca)3.1 are also evident in smooth muscle cells of human neointimal hyperplasia grown in organ culture. Furthermore, inhibition of K(Ca)3.1 suppresses neointimal formation, and exogenous REST reduces the functional impact of K(Ca)3.1. Here, we show REST plays a previously unrecognized role as a switch regulating potassium channel expression and consequently the phenotype of vascular smooth muscle cells and human vascular disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.