We have performed resistivity measurements of poly [3,4-ethylenedioxythiophene]: poly[styrenesulfonate] (PEDOT:PSS) films with varying concentrations of glycerol. Resistivity is seen to decrease exponentially from roughly 3 Ω-cm for pure PEDOT:PSS to 3 × 10 −2 Ω-cm for 35 mg/cm 3 glycerol in PEDOT:PSS. Beyond this concentration adding glycerol does not significantly change resistivity. Bulk heterojunction polymer solar cells using these variously doped PEDOT:PSS layers as electrodes were studied to characterize the effects on efficiency and lifetime. Although our data display significant scatter, lowering the resistance of the PEDOT:PSS layers results in lower device resistance and higher efficiency as expected. We also note that the lifetime of the devices tends to be reduced as the glycerol content of PEDOT:PSS is increased. Many devices show an initial increase in efficiency followed by a roughly exponential decay. This effect is explained based on concomitant changes in the zero bias conductance of the samples under dark conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.