Models such as latent semantic analysis and those based on neural embeddings learn distributed representations of text, and match the query against the document in the latent semantic space. In traditional information retrieval models, on the other hand, terms have discrete or local representations, and the relevance of a document is determined by the exact matches of query terms in the body text. We hypothesize that matching with distributed representations complements matching with traditional local representations, and that a combination of the two is favorable. We propose a novel document ranking model composed of two separate deep neural networks, one that matches the query and the document using a local representation, and another that matches the query and the document using learned distributed representations. The two networks are jointly trained as part of a single neural network. We show that this combination or 'duet' performs significantly better than either neural network individually on a Web page ranking task, and also significantly outperforms traditional baselines and other recently proposed models based on neural networks. 42 44 46 48 50
Continuous space word embeddings have received a great deal of attention in the natural language processing and machine learning communities for their ability to model term similarity and other relationships. We study the use of term relatedness in the context of query expansion for ad hoc information retrieval. We demonstrate that word embeddings such as word2vec and GloVe, when trained globally, underperform corpus and query specific embeddings for retrieval tasks. These results suggest that other tasks benefiting from global embeddings may also benefit from local embeddings.
We introduce the concept of expected exposure as the average attention ranked items receive from users over repeated samples of the same query. Furthermore, we advocate for the adoption of the principle of equal expected exposure: given a fixed information need, no item should receive more or less expected exposure than any other item of the same relevance grade. We argue that this principle is desirable for many retrieval objectives and scenarios, including topical diversity and fair ranking. Leveraging user models from existing retrieval metrics, we propose a general evaluation methodology based on expected exposure and draw connections to related metrics in information retrieval evaluation. Importantly, this methodology relaxes classic information retrieval assumptions, allowing a system, in response to a query, to produce a distribution over rankings instead of a single fixed ranking. We study the behavior of the expected exposure metric and stochastic rankers across a variety of information access conditions, including ad hoc retrieval and recommendation. We believe that measuring and optimizing expected exposure metrics using randomization opens a new area for retrieval algorithm development and progress. CCS CONCEPTS • Information systems → Evaluation of retrieval results; Learning to rank.
This paper investigates the popular neural word embedding method Word2vec as a source of evidence in document ranking. In contrast to NLP applications of word2vec, which tend to use only the input embeddings, we retain both the input and the output embeddings, allowing us to calculate a different word similarity that may be more suitable for document ranking. We map the query words into the input space and the document words into the output space, and compute a relevance score by aggregating the cosine similarities across all the query-document word pairs. We postulate that the proposed Dual Embedding Space Model (DESM) provides evidence that a document is about a query term, in addition to and complementing the traditional term frequency based approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.