The application of conventional metal–organic frameworks (MOFs) as electrode materials in supercapacitors is largely hindered by their conventionally poor electrical conductivity. This study reports the fabrication of conductive MOF nanowire arrays (NWAs) and the application of them as the sole electrode material for solid‐state supercapacitors. By taking advantage of the nanostructure and making full use of the high porosity and excellent conductivity, the MOF NWAs in solid‐state supercapacitor show the highest areal capacitance and best rate performance of all reported MOF materials for supercapacitors, which is even comparable to most carbon materials.
A strategy for combining metal oxides and metal-organic frameworks is proposed to design new materials for sensing volatile organic compounds, for the first time. The prepared ZnO@ZIF-CoZn core-sheath nanowire arrays show greatly enhanced performance not only on its selectivity but also on its response, recovery behavior, and working temperature.
A new azodioxy-linked porphyrin-based semiconductive covalent organic framework with I 2 doping-enhanced photoconductivity A homogeneous solution phase reaction at ambient condition is employed to prepare a porphyrin based Covalent Organic Framework (COF). The electrical conductivity of the newly reported COF increases more than three orders on iodine doping and it shows doping induced photo-current generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.