According to the benefits in safeguarding and transferring medical information, illness assessment, evaluation of “Magnetic Resonance Mapping” images, and certain other disciplines, blockchain and machine learning (ML) technology has significantly piqued attention in the healthcare domains. Formerly, those chores have been performed out along with individuals; eventually, individuals acquired attraction because to its precision and efficiency. The proposed study will examine the activities and possible capabilities of learning algorithms and blockchain in the healthcare professions focusing on these fascinating facts. Primary and secondary data analysis has been executed, with primary analysis method consisting of a survey of 150 randomly picked medicine professionals with expertise in machine learning and blockchain. They gave their answers that were being subsequently transferred to figures and employed as response variable in SPSS examining. The length of time where learning and blockchain have been used in medicine is really the independent factor. To better understand the primary and small hurdles of integrating machine learning and blockchain, a correlation investigation was done. Thereafter, secondary methodology is employed to validate the primary study results.
Patients suffering from severe depression may be precisely assessed using online EEG categorization and their progress tracked over time, minimizing the risk of danger and suicide. Online EEG categorization systems, on the other hand, suffer additional challenges in the absence of empirical oversight. A lack of effective decoupling between brain regions and neural networks occurs during brain disease attacks, resulting in EEG data with poor signal intensity, high noise, and nonstationary characteristics. CNN employs momentum SGD optimization. By using a tiny momentum decay factor, the literature’s starting strategy, and the same batch normalization, this work attempts to decrease model error. Before being utilized to form a training set, samples are shuffled, followed by validation and testing on the new samples in the set. An online EEG categorization system driven by a convolution neural network has been developed to do this. The approach is applied directly to the EEG input and is able to accurately and quickly identify depressed states without the need for preprocessing or feature extraction. The healthy control group and the depression control group had accuracy, sensitivity, and specificity of 99.08 percent, 98.77 percent, and 99.42 percent, respectively, in experiments on depression evaluation based on publicly accessible data. The machine learning technique based on feature extraction is often getting more and more complex, making it only suited for offline EEG categorization. While neural networks have become increasingly important in the study of artificial intelligence in recent years, they are still essentially black-box function approximations with limited interpretability. In addition, quantitative study of the neural network shows that depressed patients and healthy persons have remarkable dissimilarity between the right and left temporal lobe brain regions.
With the continuous development of social networks, Weibo has become an essential platform for people to share their opinions and feelings in daily life. Analysis of users’ emotional tendencies can be effectively applied to public opinion control, public opinion surveys, and product recommendations. However, the traditional deep learning algorithm often needs a large amount of data to be retained to obtain a better accuracy when faced with new work tasks. Given this situation, a multiclassification method of microblog negative sentiment based on MAML (model-agnostic metalearning) and BiLSTM (bidirectional extended short-term memory network) is proposed to represent the microblog text word vectorization and the combination of MAML and BiLSTM is constructed. The model of BiLSTM realizes the classification of negative emotions on Weibo and updates the parameters through machine gradient descent; the metalearner in MAML calculates the sum of the losses of multiple pieces of training, performs a second gradient descent, and updates the metalearner parameters. The updated metalearner can quickly iterate when faced with a new Weibo negative sentiment classification task. The experimental results show that compared with the prepopular model, on the Weibo negative sentiment dataset, the precision rate, recall rate, and F1 value are increased by 1.68 percentage points, 2.86 percentage points, and 2.27 percentage points, respectively.
The term blockchain is mainly regarded as the distributed transaction which is mainly comprised of different blocks, and each set tends to represent the data that are being associated with the previous blocks. The blockchain is mainly managed through peer-to-peer networks which comparatively involves in adhering to the protocol of authenticating various blocks to form the blockchain. The usage of blockchain technology has been increasingly used in different fields, and healthcare services are now using blockchain for better patient delivery, detecting disease, and other aspects. The scope of the proposed study is that this study has exploited the function of a blockchain-enabled big data network to support medical professionals in giving better treatment modalities and delivering better patient care. The application of a new generation of smart block chains such as Ethereum and NEM is now offering better services and features in creating blockchain-based healthcare data management and hence support healthcare centers, medical practitioners, nurses, radiologists, and patients for better healthcare management. The application of blockchain technology in big data networks supports adding more value as it results in enhanced data quality, accessibility, and support in creating better security and safety of data and information, which is highly essential in the medical industry. Blockchain technology enables big data technologies enabled in supporting medical practitioners in addressing various healthcare ailments; one of the major diseases impacting many people around the world is diabetes. Patients with such ailments tend to generate more data and information related to the disease and health-related aspects. Hence, this information requires being maintained and analyzed, so that superior healthcare services can be provided. This study is more involved in the investigation of blockchain technology through a big data network enabled in offering better care for elderly individuals who have been affected due to diabetes, the researchers propose to choose a questionnaire method to collect the data from nearly 169 respondents, and these data were then analyzed using SPSS data package. The analyst used percentage analysis, correlation analysis, and chi-square test to analyze the data which has been collated by the researchers. The results and discussion show in detail the major aspects of blockchain technology in supporting healthcare professionals for better diabetes care management for elderly individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.