Gene Regulatory Networks (GRNs) are the pioneering methodology for finding new gene interactions getting insights of the biological processes using time series gene expression data. It remains a challenge to study the temporal nature of gene expression data that mimic complex non-linear dynamics of the network. In this paper, an intelligent framework of recurrent neural network (RNN) and swarm intelligence (SI) based Particle Swarm Optimization (PSO) with controlled behaviour has been proposed for the reconstruction of GRN from time-series gene expression data. A novel PSO algorithm enhanced by human cognition influenced by the ideology of Bhagavad Gita is employed for improved learning of RNN. RNN guided by the proposed algorithm simulates the nonlinear and dynamic gene interactions to a greater extent. The proposed method shows superior performance over traditional SI algorithms in searching biologically plausible candidate networks. The strength of the method is verified by analyzing the small artificial network and real data of Escherichia coli with improved accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.