The SWI/SNF multi-subunit complex modulates chromatin structure through the activity of two mutually exclusive catalytic subunits, SMARCA2 and SMARCA4, which both contain a bromodomain and an ATPase domain. Using RNAi, cancer-specific vulnerabilities have been identified in SWI/SNF mutant tumors, including SMARCA4-deficient lung cancer, however, the contribution of conserved, druggable protein domains to this anticancer phenotype is unknown. Here, we functionally deconstruct the SMARCA2/4 paralog dependence of cancer cells using bioinformatics, genetic and pharmacological tools. We evaluate a selective SMARCA2/4 bromodomain inhibitor (PFI-3) and characterize its activity in chromatin-binding and cell-functional assays focusing on cells with altered SWI/SNF complex (e.g. Lung, Synovial Sarcoma, Leukemia, and Rhabdoid tumors). We demonstrate that PFI-3 is a potent, cell-permeable probe capable of displacing ectopically expressed, GFP-tagged SMARCA2-bromodomain from chromatin, yet contrary to target knockdown, the inhibitor fails to display an antiproliferative phenotype. Mechanistically, the lack of pharmacological efficacy is reconciled by the failure of bromodomain inhibition to displace endogenous, full-length SMARCA2 from chromatin as determined by in situ cell extraction, chromatin immunoprecipitation and target gene expression studies. Further, using inducible RNAi and cDNA complementation (bromodomain- and ATPase-dead constructs), we unequivocally identify the ATPase domain, and not the bromodomain of SMARCA2, as the relevant therapeutic target with the catalytic activity suppressing defined transcriptional programs. Taken together, our complementary genetic and pharmacological studies exemplify a general strategy for multi-domain protein drug-target validation and in case of SMARCA2/4 highlight the potential for drugging the more challenging helicase/ATPase domain to deliver on the promise of synthetic-lethality therapy.
BackgroundRecent reports have shown that t-DARPP (truncated isoform of DARPP-32) can mediate trastuzumab resistance in breast cancer cell models. In this study, we evaluated expression of t-DARPP in human primary breast tumors, and investigated the role of t-DARPP in regulating growth and proliferation in breast cancer cells.ResultsQuantitative real time RT-PCR analysis using primers specific for t-DARPP demonstrated overexpression of t-DARPP in 36% of breast cancers (13/36) as opposed to absent to very low t-DARPP expression in normal breast tissue (p < 0.05). The mRNA overexpression of t-DARPP was overwhelmingly observed in ductal carcinomas, including invasive ductal carcinomas and intraductal carcinomas, rather than other types of breast cancers. The immunohistochemistry analysis of DARPP-32/t-DARPP protein(s) expression in breast cancer tissue microarray that contained 59 tumors and matched normal tissues when available indicated overexpression in 35.5% of primary breast tumors that were more frequent in invasive ductal carcinomas (43.7%; 21/48). In vitro studies showed that stable overexpression of t-DARPP in MCF-7 cells positively regulated proliferation and anchorage-dependent and -independent growth. Furthermore, this effect was concomitant with induction of phosphorylation of AKTser473 and its downstream target phosphoser9 GSK3β, and increased Cyclin D1 and C-Myc protein levels. The knockdown of endogenous t-DARPP in HCC1569 cells led to a marked decrease in phosphorylation of AKTsser473 and GSK3βser9. The use of PI3K inhibitor LY294002 or Akt siRNA abrogated the t-DARPP-mediated phosphorylation of AKTser473 and led to a significant reduction in cell growth.ConclusionsOur findings underscore the potential role of t-DARPP in regulating cell growth and proliferation through PI3 kinase-dependent mechanism.
Replication protein A (RPA), the major eukaryotic single-stranded DNA (ssDNA) binding protein, is involved in nearly all cellular DNA transactions. The RPA N-terminal domain (RPA70N) is a recruitment site for proteins involved in DNA damage response and repair. Selective inhibition of these protein-protein interactions has the potential to inhibit the DNA damage response and sensitize cancer cells to DNA-damaging agents without affecting other functions of RPA. To discover a potent, selective inhibitor of the RPA70N protein-protein interactions to test this hypothesis, we used NMR spectroscopy to identify fragment hits that bind to two adjacent sites in the basic cleft of RPA70N. High-resolution X-ray crystal structures of RPA70N-ligand complexes revealed how these fragments bind to RPA and guided the design of linked compounds that simultaneously occupy both sites. We have synthesized linked molecules that bind to RPA70N with submicromolar affinity and minimal disruption of RPA’s interaction with ssDNA.
Stapled helix peptides can serve as useful tools for inhibiting protein–protein interactions but can be difficult to optimize for affinity. Here we describe the discovery and optimization of a stapled helix peptide that binds to the N-terminal domain of the 70 kDa subunit of replication protein A (RPA70N). In addition to applying traditional optimization strategies, we employed a novel approach for efficiently designing peptides containing unnatural amino acids. We discovered hot spots in the target protein using a fragment-based screen, identified the amino acid that binds to the hot spot, and selected an unnatural amino acid to incorporate, based on the structure–activity relationships of small molecules that bind to this site. The resulting stapled helix peptide potently and selectively binds to RPA70N, does not disrupt ssDNA binding, and penetrates cells. This peptide may serve as a probe to explore the therapeutic potential of RPA70N inhibition in cancer.
Replication Protein A (RPA) is a ssDNA binding protein that is essential for DNA replication and repair. The initiation of the DNA damage response by RPA is mediated by protein-protein interactions involving the N-terminal domain of the 70 kDa subunit with partner proteins. Inhibition of these interactions increases sensitivity towards DNA damage and replication stress and may therefore be a potential strategy for cancer drug discovery. Towards this end, we have discovered two lead series of compounds, derived from hits obtained from a fragment-based screen, that bind to RPA70N with low micromolar affinity and inhibit the binding of an ATRIP-derived peptide to RPA. These compounds may offer a promising starting point for the discovery of clinically useful RPA inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.