Cyber-attack classification and detection process is based on the fact that intrusive activities are different from normal system activities .Its detection is a very complex process in network security. In current network security scenario various types of cyber-attack family exist, some are known family and some are unknown one . The detection of known attack is not very difficult it generally uses either signature base approach or rule based approach, but to find out the unknown one is a challenging task. Intrusion detection is a process for this .One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. This paper addresses using of an ensemble classification methods for intrusion detection. The paper proposes a cascaded support vector machine classifier or an improved ensemble classifier using multiple kernel function. The multiple kernel is Gaussian in nature. The graph based /neural network technique used for feature collection of different types of cyber-attack data. The proposed algorithm is very efficient in comparison of pervious method.
General Terms
SVM, Gaussian hyper plane, Euclidean distance
KeywordsCyber-attack Classification, Ensemble Technique NN, KDDCUP99, k-Nearest Neighbour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.