A numerical study of the flow topologies over the 60° delta wing of the AGARD-B model at Mach 0·80 has revealed that vortex bursting occurs between 13°-15° angle-of-attack, while vortex separation occurs above 18°. These aerodynamic features have been identified as additional comparison criteria which need to be replicated for facilities using the model for calibration or inter-tunnel comparison purposes. The numerical simulations were performed using ANSYS Fluent V13, a structured mesh with near wall treatment and the Spalart-Allmaras and κ-ω SST turbulence models, and validated experimentally in a 5′ × 5′ transonic facility. Other aspects not previously identified or studied are firstly a recovery shock between the primary and secondary vortex that exists only when vortex bursting occurs, and secondly the lack of a shock between the wing and vortex when the flow topology corresponds to the centreline shock region as observed in other studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.