Hydroconversion of dicyclopentadiene (DCPD) into high energy density jet propellant JP-10 has been successfully achieved with a greener single-step route over supported gold catalyst. The physicochemical properties of the catalysts were studied with XRD, SEM, TEM, N 2 -adsorption, NH 3 -TPD. The influence of reaction conditions like temperature, pressure, time etc. were studied in detail. The studies reveal that pressure and temperature play crucial roles in the reaction. Moderate acid sites in the catalysts are chiefly involved in isomerization and gold catalyzes hydrogenation of the intermediates. Analysis of the product stream at different intervals indicates a dissociation-recombination mechanism for the reaction. Reusability of the catalyst was tested by conducting five runs with the same catalyst. Even after the fifth run, the catalyst retains relatively high conversion and selectivity to exo-tetrahydrodicyclopentadiene (exo-THDCPD). † Electronic supplementary information (ESI) available. See
The systematic immobilization of cobalt(II) Schiff base complexes on SBA-15 mesoporous silica via copper catalyzed [3 + 2] azide-alkyne cycloaddition (CuAAC) "click reaction" involving either step-wise synthesis of silica-bound Schiff base ligand followed by its subsequent complexation with cobalt ions, or by the direct immobilization of preformed Co(II) Schiff base complex to the silica support is described. The catalytic activity of the prepared complexes was studied for the oxidation of alcohols to carbonyl compounds using molecular oxygen as oxidant. The immobilized complexes were recycled for several runs without loss in catalytic activity and no leaching was observed during this course.
The first report on the use of chlorotriphosphazenyl anchored mesoporous silica as a novel support for the immobilization of oxo-vanadium Schiff base moieties is described. The resulting heterogeneous material showed better catalytic activity than homogeneous as well as silica immobilized oxo-vanadium Schiff base for the hydroxylation of benzene with hydrogen peroxide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.