We report on a homozygous frameshift deletion in DDX59 (c.185del: p.Phe62fs*13) in a family presenting with orofaciodigital syndrome phenotype associated with a broad neurological involvement characterized by microcephaly, intellectual disability, epilepsy, and white matter signal abnormalities associated with cortical and subcortical ischemic events. DDX59 encodes a DEAD‐box RNA helicase and its role in brain function and neurological diseases is unclear. We showed a reduction of mutant cDNA and perturbation of SHH signaling from patient‐derived cell lines; furthermore, analysis of human brain gene expression provides evidence that DDX59 is enriched in oligodendrocytes and might act within pathways of leukoencephalopathies‐associated genes. We also characterized the neuronal phenotype of the Drosophila model using mutant mahe, the homolog of human DDX59, and showed that mahe loss‐of‐function mutant embryos exhibit impaired development of peripheral and central nervous system. Taken together, our results support a conserved role of this DEAD‐box RNA helicase in neurological function.
Notch signaling is an evolutionary conserved process that influences cell fate determination, cell proliferation, and cell death in a context-dependent manner. Notch signaling is fine-tuned at multiple levels and misregulation of Notch has been implicated in a variety of human diseases. We have characterized maheshvara (mahe), a novel gene in Drosophila melanogaster that encodes a putative DEAD box protein that is highly conserved across taxa and belongs to the largest group of RNA helicase. A dynamic pattern of mahe expression along with the maternal accumulation of its transcripts is seen during early stages of embryogenesis. In addition, a strong expression is also seen in the developing nervous system. Ectopic expression of mahe in a wide range of tissues during development results in a variety of defects, many of which resemble a typical Notch loss-of-function phenotype. We illustrate that ectopic expression of mahe in the wing imaginal discs leads to loss of Notch targets, Cut and Wingless. Interestingly, Notch protein levels are also lowered, whereas no obvious change is seen in the levels of Notch transcripts. In addition, mahe overexpression can significantly rescue ectopic Notch-mediated proliferation of eye tissue. Further, we illustrate that mahe genetically interacts with Notch and its cytoplasmic regulator deltex in trans-heterozygous combination. Coexpression of Deltex and Mahe at the dorso-ventral boundary results in a wing-nicking phenotype and a more pronounced loss of Notch target Cut. Taken together we report identification of a novel evolutionary conserved RNA helicase mahe, which plays a vital role in regulation of Notch signaling. KEYWORDS Drosophila; DEAD box helicase; Notch signaling; RNA-binding protein; RNA helicase N OTCH signaling is an evolutionary conserved process that mediates cell-cell communication, which ultimately regulates cell fate (Artavanis-Tsakonas et al. 1999). Notch signaling is critical for many developmental processes and aberrant notch signaling has been related to many human diseases including cancer (Gridley 2003). Notch encodes a trans-membrane receptor that comprises an extracellular domain (NECD) and an intracellular domain (NICD). Notch is expressed at the cell surface as a heterodimeric receptor that is a result of furin-dependent cleavage (S1) occurring in the trans-Golgi network. At the cell surface it physically interacts with the ligands that are expressed in the apposing cells. This interaction with the ligand facilitates a series of proteolytic cleavages, ultimately resulting in the release of NICD. Released NICD translocates into the nucleus, where it interacts with a DNA binding protein CSL (mammalian CBF1/Drosophila Suppressor of Hairless/C. elegans Lag-1) and activates downstream gene expression, by relieving the repressor complex that silences Notch target genes (ArtavanisTsakonas et al. 1983;Logeat et al. 1998;Struhl and Greenwald 1999;Brou et al. 2000;Kopan 2002;Lieber et al. 2002). Finetuning of Notch signaling is mediated by a vast num...
Recent studies show that pre-follicular mouse oogenesis takes place in germline cysts, highly conserved groups of oogonial cells connected by intercellular bridges that develop as nurse cells as well as an oocyte. Long studied in Drosophila and insect gametogenesis, female germline cysts acquire cytoskeletal polarity and traffic centrosomes and organelles between nurse cells and the oocyte to form the Balbiani body, a conserved marker of polarity. Mouse oocyte development and nurse cell dumping are supported by dynamic, cell-specific programs of germline gene expression. High levels of perinatal germ cell death in this species primarily result from programmed nurse cell turnover after transfer rather than defective oocyte production. The striking evolutionary conservation of early oogenesis mechanisms between distant animal groups strongly suggests that gametogenesis and early embryonic development in vertebrates and invertebrates share even more in common than currently believed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.