Plane-wave density functional theory calculations were performed to investigate the binding and diffusion of hydrogen on three flat Ni surfaces, Ni(100), Ni(110), and Ni(111), and two stepped Ni surfaces, Ni(210) and Ni(531). On each surface, the favored adsorption sites were identified by considering the energy and stability of various binding sites and zero-point energy corrections were computed. Binding energies are compared with experimental and theoretical results from the literature. Good agreement with experimental and previous theoretical data is found. At surface coverages where adsorbate-adsorbate interactions are relatively weak, the binding energy of H is similar on the five Ni surfaces studied. Favorable binding energies are observed for stable surface sites, while subsurface sites have unfavorable values relative to the gas phase molecular hydrogen. Minimum energy paths for hydrogen diffusion on Ni surfaces and into subsurface sites were constructed.
The adsorption of atomic oxygen and carbon was studied with plane wave density functional theory on four Ni surfaces, Ni(110), Ni(111), Ni(210), and Ni(531). Various adsorption sites on these surfaces are examined in order to identify the most favorable adsorption site for each atomic species. The dependence of surface bonding on adsorbate coverage is also investigated. Adsorption energies and structural information are obtained and compared with existing experimental results for Ni(110) and Ni(111). In addition, activation barriers to CO dissociation have been determined on Ni(111) and Ni(531) by locating the transition states for these processes. Our results indicate that the binding energies of C are comparatively stronger on stepped surfaces than on flat surfaces, and the energy barriers associated with CO dissociation strongly favor reactions occurring near surface steps.
Diffusion of hydrogen in metals is a fundamental process in hydrogen storage in metal hydrides, hydrogen purification by metal membranes, and in hydrogen embrittlement. Quantitative applications of existing models for hydrogen diffusion by activated hopping and quantum tunneling require large scale first principles calculations that are not well suited to metal alloys containing many structurally distinct interstitial sites. We applied a semiclassically corrected version of harmonic transition state theory in conjunction with plane wave density functional theory to examine hydrogen diffusion in multiple C15 Laves phase AB 2 compounds and in bcc CuPd. Comparison with experimental data shows that this theory correctly captures the characteristics of hydrogen diffusion in these materials over a wide range of temperatures. This method is well suited to application in complex alloys.
Surfaces of simple fcc metals such as Cu with nonzero and unequal Miller indices are intrinsically chiral. Density functional theory (DFT) calculations are a useful way to study the enantiospecific adsorption of small chiral molecules on these chiral metal surfaces. We report DFT calculations of seven chiral molecules on several structurally distinct chiral Cu surfaces. These surfaces include two surfaces with (111)-oriented terraces and one with (100)-oriented terraces. Calculations are also described on a surface that was modified to mimic the surface structures that typically appear on real metal surfaces following thermally driven fluctuations in step edges. Our results provide initial information on how variation in the surface structure of intrinsically chiral metal surfaces can affect the enantiospecific adsorption of small molecules on these surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.