The main aim of this paper is to develop necessary Optimality conditions using Convexifactors for mathematical programs with equilibrium constraints (MPEC). For this purpose a nonsmooth version of the standard Guignard constraint qualification (GCQ) and strong stationarity are introduced in terms of convexifactors for MPEC. It is shown that Strong stationarity is the first order necessary optimality condition under nonsmooth version of the standard GCQ. Finally, notions of asymptotic pseudoconvexity and asymptotic quasiconvexity are used to establish the sufficient optimality conditions for MPEC.
<p style='text-indent:20px;'>The main aim of this paper is to establish sufficient optimality conditions using an upper estimate of Clarke subdifferential of value function and the concept of convexifactor for optimistic bilevel programming problems with convex and non-convex lower-level problems. For this purpose, the notions of asymptotic pseudoconvexity and asymptotic quasiconvexity are defined in terms of the convexifactors.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.