Mammalian oocytes can be very long-lived cells and thereby very likely to encounter DNA damage during their lifetime. Defective DNA repair may result in oocytes that are developmentally incompetent or give rise to progeny with congenital disorders. During oocyte maturation, damaged DNA is repaired primarily by non-homologous end joining (NHEJ) or homologous recombination (HR). Although these repair pathways have been studied extensively, the associated DNA synthesis is poorly characterized. Using porcine oocytes, we demonstrate that the DNA synthesis machinery is present during oocyte maturation and dynamically recruited to sites of DNA damage. DNA polymerase δ is identified as being crucial for oocyte DNA synthesis. Further, inhibiting synthesis causes DNA damage to accumulate and delays the progression of oocyte maturation. Importantly, inhibition of the spindle assembly checkpoint (SAC) bypassed the delay of oocyte maturation caused by DNA synthesis inhibition. Finally, we found that ∼20% of unperturbed oocytes experienced spontaneously-arising damage during maturation. Cumulatively, our findings indicate that oocyte maturation requires damage-associated DNA synthesis that is monitored by the SAC.
Sperm capacitation is the key event prior to fertilization. Success rate of currently used assisted reproductive technology like in-vitro fertilization is 50% dependent on sperm maturation or capacitation. In-vivo capacitation occur almost in female reproductive tract in response to various signaling or enzymatic molecules. Interestingly, both early and late events of capacitation are centrally regulated by protein kinase A (PKA). Influx of Ca2+ and HCO3-transmembrane drive leads to change in pH and intracellular cAMP which ultimately activate PKA regulated capacitation. PKA phosphorylates several target proteins that are presumed to initiate different signaling pathways. Some divalent heavy metals like lead, mercury, arsenic and cadmium mimic Ca++ entry and its functions and ultimately affect capacitation by inhibiting or inducing tyrosine phosphorylation. In this chapter we review the mechanism of heavy metals by which they affect the tyrosine phosphorylation during sperm capacitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.