Face recognition is one of the multimedia items that has seen a remarkable increase in popularity in recent years. Face continues to be the most difficult study topic for experts in the field of computer vision and image processing since it is an item with different properties for detection. We have attempted to handle the most challenging facial aspects in this survey work, including posture invariance, aging, illuminations, and partial occlusion. When applied to facial photographs, they are regarded as essential components of face recognition systems. The most recent face detection methods and techniques are also examined in this paper, including Eigenface, Artificial Neural Networks (ANN), Support Vector Machines (SVM), Principal Component Analysis (PCA), Independent Component Analysis (ICA), Gabor Wavelets, Elastic Bunch Graph Matching, 3D Morphable Models, and Hidden Markov Models. Many testing face databases, such as AT & T (ORL), AR, FERET, LFW, YTF, and Yale, also reviewed. However, the purpose of this study is to present a thorough literature assessment on face recognition and its applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.