Determination of internal qualities such as total soluble solids (TSS) and pH is a paramount concern in strawberry cultivation. Therefore, the main objective of the current study was to develop a non-destructive approach with machine learning algorithms for predicting TSS and pH of strawberries. Six hundred samples (100 samples in each ripening stage) in six ripening stages were collected randomly for measuring the biometrical characteristics, i.e., length, diameters, weight and TSS and pH values. An image of each strawberry fruit was captured for colour feature extraction using an image processing technique. Channels of each colour space (RGB, HSV and HSL) were used as input variables for developing multiple linear regression (MLR) and support vector machine regression (SVM-R) models. The result of the study indicated that SVM-R model with HSV colour space performed slightly better than MLR model for TSS and pH prediction. The HSV based SVM-R model could explain a maximum of 84.1% and 79.2% for TSS and 78.8% and 72.6% for pH of the variations in measured and predicted data in training and testing stages, respectively. Further experiments need to be conducted with different strawberry cultivars for the prediction of more internal qualities along with the improvement of model performance.
Intensively grown strawberries in a greenhouse require frequent and precise soil physicochemical constituents for optimal production. Strawberry leaf color analyses are the most effective way to evaluate soil status and protect against excess environmental nutrients and financial setbacks. Meanwhile, precision agriculture (PA) endorsements have been utilized to mimic solutions to these problems. This research aimed to create machine learning models such as multiple linear regression (MLR) and gradient boost regression (GBR) for simulating strawberry leaf color changes related to soil physicochemical components and plant age using RGB (red, green, and blue) mean values. The soil physicochemical properties of the largest varied colored leaves of strawberry were precisely measured by a multifunctional soil sensor from the rooting zones. Simultaneously, 400 strawberry leaflets were detached in each vegetative and reproductive stage, and individual leaves were captured using a digital imaging system. The RGB mean values of colored images were extracted using the image segmentation algorithms of image processing technique. Consequently, MLR and GBR models were developed to predict leaf RGB mean values based on soil physicochemical measurements and plant age. The GBR model vigorously fitted with RGB mean values throughout the growth stage, with R2 and RMSE values of (R = 0.77, 7.16, G = 0.72, 7.37, and B = 0.70, 5.68), respectively. Furthermore, the MLR model performed moderately with R2 and RMSE values of (R = 0.67, 8.59, G = 0.57, 9.12, and B = 0.56, 6.81) when consecutively predicting RGB mean values in strawberry leaves. Eventually, the GBR model performed more effectively than the MLR model with high-performance metrics. In addition, the leaf color model uses visualization technology to measure growth progress, and it performs well in predicting dynamic changes in strawberry leaf color.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.