This article presents a defect detection model of sugarcane plantation images. The objective is to assess the defect areas occurring in the sugarcane plantation before the harvesting seasons. The defect areas in the sugarcane are usually caused by storms and weeds. This defect detection algorithm uses high-resolution sugarcane plantations and image processing techniques. The algorithm for defect detection consists of four processes: (1) data collection, (2) image preprocessing, (3) defect detection model creation, and (4) application program creation. For feature extraction, the researchers used image segmentation and convolution filtering by 13 masks together with mean and standard deviation. The feature extraction methods generated 26 features. The K-nearest neighbors algorithm was selected to develop a model for the classification of the sugarcane areas. The color selection method was also chosen to detect defect areas. The results show that the model can recognize and classify the characteristics of the objects in sugarcane plantation images with an accuracy of 96.75%. After the comparison with the expert surveyor’s assessment, the accurate relevance obtained was 92.95%. Therefore, the proposed model can be used as a tool to calculate the percentage of defect areas and solve the problem of evaluating errors of yields in the future.
This article presents a new model for forecasting the sugarcane yield that substantially reduces current rates of assessment errors, providing a more reliable pre-harvest assessment tool for sugarcane production. This model, called the Wondercane model, integrates various environmental data obtained from sugar mill surveys and government agencies with the analysis of aerial images of sugarcane fields obtained with drones. The drone images enable the calculation of the proportion of unusable sugarcane (the defect rate) in the field. Defective cane can result from adverse weather or other cultivation issues. The Wondercane model is developed on the principle of determining the yield not through data in regression form but rather through data in classification form. The Reverse Design method and the Similarity Relationship method are applied for feature extraction of the input factors and the target outputs. The model utilizes data mining to recognize and classify the dataset from the sugarcane field. Results show that the optimal performance of the model is achieved when: (1) the number of Input Factors is five, (2) the number of Target Outputs is 32, and (3) the Random Forest algorithm is used. The model recognized the 2019 training data with an accuracy of 98.21%, and then it correctly forecast the yield of the 2019 test data with an accuracy of 89.58% (10.42% error) when compared to the actual yield. The Wondercane model correctly forecast the harvest yield of a 2020 dataset with an accuracy of 98.69% (1.31% error). The Wondercane model is therefore an accurate and robust tool that can substantially reduce the issue of sugarcane yield estimate errors and provide the sugar industry with improved pre-harvest assessment of sugarcane yield.
In this paper, we introduce a new class of nonexpansive type of mapping namely, CAK-generalized nonexpansive mapping, which is more general than an AK-generalized nonexpansive mapping and $\alpha$-nonexpansive mapping. Then, we obtain the proposition of the approximation method for an CAK-generalized nonexpansive in Hilbert spaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.