Abstract:Mining for resources extraction may lead to several geological and associated environmental changes due to ground movements, collision with mining cavities and deformation of aquifers. Geological changes may continue in a reclaimed mine area, and the deformed aquifers may entail a breakdown of substrates and an increase in ground water tables, which may cause surface area inundation. Consequently, a reclaimed mine area may experience surface area collapse, i.e. subsidence, and degradation of vegetation health. Thus, monitoring short-term landscape dynamics in a reclaimed mine area may provide important information on the long-term geological and environmental impacts of mining activities. We studied landscape dynamics in Kirchheller Heide, Germany, which experienced extensive soil movement due to longwall mining without stowing, using Landsat imageries between 2013 and 2016. A Random Forest image classification technique was applied to analyse land-use and land-cover dynamics and the growth of wetland areas was assessed using a Spectral Mixture Analysis (SMA). We also analyzed the changes in vegetation health using a Normalized Difference Vegetation Index (NDVI). We observed a 19.9% growth of wetland area within the four years with 87.2% of growth in the coverage of two major waterbodies in the reclaimed mine area. NDVI values indicate that 66.5% of the vegetation of the study area was degraded due to changes in ground water tables and surface flooding. Our results inform environmental management and mining reclamation authorities about the subsidence spots and priority mitigation areas from land surface and vegetation degradation in Kirchheller Heide.
Urban sprawl propelled by rapid population growth leads to the shrinkage of productive agricultural lands and pristine forests in the suburban areas and, in turn, substantially alters ecosystem services. Hence, the quantification of urban sprawl is crucial for effective urban planning, and environmental and ecosystem management. Like many megacities in fast growing developing countries, Chennai, the capital of Tamilnadu and one of the business hubs in India, has experienced extensive urban sprawl triggered by the doubling of total population over the past three decades. We employed the Random Forest (RF) classification on Landsat imageries from 1991, 2003, and 2016, and computed spatial metrics to quantify the extent of urban sprawl within a 10km suburban buffer of Chennai. The rate of urban sprawl was quantified using Renyi's entropy, and the urban extent was predicted for 2027 using land-use and land-cover change Peer-reviewed version available at Entropy 2017, 19, , 163; doi:10.3390/e19040163 2 addressing the social-ecological consequences of urban sprawl and the protection of ecosystem services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.