This paper presents turbulent characteristics of an impinging F-0-0-F type injector in which fuel and oxidizer impinge on each other to atomize under the different momentum ratio. Water was used as an inert simulant liquid instead of fuel and oxidizer. The droplet size and velocity in the impinging spray flow field were measured using a PDPA. The gradient of the spray halfwidthtb-) along the long-axis direction declined throughout the entire spray flow field with increasing the momentum ratio from 1.19 to 6.48. However, the gradient of the half-widthfb.) along the short-axis direction decreased with increasing the momentum ratio. The turbulence intensity and turbulent kinetic energy were converged into the center of the initial region with increasing the momentum ratio. As the momentum ratio increased from MR=1.19 to MR=6. 48, the turbulent shear stress decreased. The results of this study can be used for the design of an impinging type injector for liquid rockets.
In the present study, fiber-reinforced plastics (FRP) grid-reinforced concrete with very rapid hardening polymer (VRHP) mortar composites were fabricated using three types of design methods for the FRP grid (hand lay-up method, resin infusion method, and prepreg oven vacuum bagging method), along with two types of fibers (carbon fiber and glass fiber) and two types of sheets (fabric and prepreg). The FRP grid was prepared by cutting the FRP laminates into a 10 mm thick, 50 mm × 50 mm grid. The tensile behavior of the FRP grid embedded in composites was systematically analyzed in terms of the load extension, fracture mode, partial tensile strain, and load-bearing rate. The CFRP grid manufactured by the prepreg OVB method showed the best tensile behavior compared to the CFRP grid manufactured by the hand lay-up and resin infusion methods. The load-bearing of each grid point was proportional to the height from the load-bearing part when reaching the maximum tensile load. In addition, finite element analysis was conducted to compare the experimental and analysis results.
Carbon fiber-reinforced plastic (CFRP) has been widely investigated as a reinforcement material to address the corrosion and durability issues of reinforced concrete (RC). To improve the strain of FRP grids, we investigated the effect of single-fiber types, hybrid ratios, and stacking patterns on the strain of the composite materials. Blended fabrics in which different fibers are woven were used to further improve the strain of carbon fibers (CFs). In the blended fabrics, CFs with high tensile strength were mixed with high-strain glass fibers (GFs) or aramid fibers (AFs). Fibers with different mechanical properties were mixed to improve the strain without reducing the tensile strength of the composite materials. The fiber arrangement direction was controlled by CF/GF blended fabric. CFs are arranged in the direction parallel to the tensile load direction with no strength degradation, and GFs are arranged in the direction perpendicular to the increase in strain. Compared to the mechanical properties of the single CF composites, the fabrics obtained via an FRP mixing method proposed in this study showed an increase in the tensile strength by 7% from 568.17 to 608.34 MPa with no strength degradation and an increase in strain by 34% from 0.97% to 1.30%.
As the use of carbon-fiber-reinforced plastic (CFRP) and glass-fiber-reinforced plastic is frequent in the field of construction, a method for measuring FRP resin content is needed. Herein, thermal gravimetric analysis (TGA) was employed to optimize the heat treatment conditions (temperature and time) for determining the resin content in which only the resin was removed without fiber heat loss. Accordingly, the measurement was performed in 100 °C increments at a resin pyrolysis temperature up to 800 °C with a heat treatment time of 4 h to continuously observe the degree of thermal decomposition of the resin. The thermal decomposition of unsaturated polyester was confirmed at the melting point (350 ℃) regardless of the type of fibers used as reinforcement. In the case of CFRP, most of the resin decomposition occurred at 300 °C. Notably, the resin was removed at a pyrolysis temperature of 400 ℃ and almost no change in weight was observed. However, at a pyrolysis temperature of 500 °C or higher, the thermal decomposition of the fibers occurred partially. The results show that the composite resin was removed within 10 min at a pyrolysis temperature of 400 °C in an air atmosphere when using TGA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.