A number of lipophilic 14-substituted derivatives of doxorubicin were synthesized through conjugation of doxorubicin-14-hemisuccinate with different fatty amines or tetradecanol to enhance the lipophilicity, cellular uptake, and cellular retention for sustained anticancer activity. The conjugates inhibited the cell proliferation of human leukemia (CCRF-CEM, 69-76%), colon adenocarcinoma (HT-29, 60-77%), and breast adenocarcinoma (MDA-MB-361, 66-71%) cells at a concentration of 1 μM after 96-120 h of incubation. The N-tetradecylamido derivative of doxorubicin 14-succinate (10) exhibited consistently comparable antiproliferative activity to doxorubicin in a time-dependent manner (IC(50) = 77 nM in CCRF-CEM cells). Flow cytometry analysis showed a 3-fold more cellular uptake of 10 than doxorubicin in SK-OV-3 cells. Confocal microscopy revealed that the conjugate was distributed in cytoplasmic and perinuclear areas during the first 1 h of incubation and slowly relocalized in the nucleus after 24 h. The cellular hydrolysis study showed that 98% of compound 10 was hydrolyzed intracellularly within 48 h and released doxorubicin.
A number of fatty acyl derivatives of (-)-2',3'-dideoxy-3'-thiacytidine (lamivudine, 3TC, 1) were synthesized and evaluated for their anti-HIV activity. The monosubstituted 5'-O-fatty acyl derivatives of 3TC (EC(50) = 0.2-2.3 μM) were more potent than the corresponding monosubstituted N(4)-fatty acyl (EC(50) = 0.4-29.4 μM) and 5'-O-N(4)-disubstituted (EC(50) = 72.6 to >154.0 μM) derivatives of the nucleoside. 5'-O-Myristoyl (16) and 5'-O-12-azidododecanoyl derivatives (17) were found to be the most potent compounds (EC(50) = 0.2-0.9 μM) exhibiting at least 16-36-fold higher anti-HIV activity against cell-free virus than 1 (EC(50) = 11.4-32.7 μM). The EC(90) values for 16 against B-subtype and C-subtype clinical isolates were several folds lower than those of 1. The cellular uptake studies confirmed that compound 16 accumulated intracellularly after 1 h of incubation with CCRF-CEM cells and underwent intracellular hydrolysis. 5'-O-Fatty acyl derivatives of 1 showed significantly higher anti-HIV activity than the corresponding physical mixtures against the B-subtype virus.
Doxorubicin (Dox) is a hydrophilic anticancer drug that has short retention time due to the efficient efflux in some cancer cells (e.g., ovarian adenocarcinoma SK-OV-3). Cyclic [W(RW)(4)] and the corresponding linear peptide (RW)(4) were conjugated with Dox through an appropriate linker to afford cyclic [W(RW)(4)]-Dox and linear (RW)(4)-Dox conjugates to enhance the cellular uptake and cellular retention of the parent drug for sustained anticancer activity. Comparative antiproliferative assays between covalent (cyclic [W(RW)(4)]-Dox and linear (RW)(4)-Dox) and the corresponding noncovalent physical mixtures of the peptides and Dox were performed. Cyclic [W(RW)(4)]-Dox inhibited the cell proliferation of human leukemia (CCRF-CEM) (62-73%), ovarian adenocarcinoma (SK-OV-3) (51-74%), colorectal carcinoma (HCT-116) (50-67%), and breast carcinoma (MDA-MB-468) (60-79%) cells at a concentration of 1 μM after 72-120 h of incubation. Cyclic [W(RW)(4)]-Dox exhibited higher antiproliferative activity than linear (RW)(4)-Dox in all cancer cells with the highest activity observed after 72 h. Flow cytometry analysis showed 3.6-fold higher cellular uptake of cyclic [W(RW)(4)]-Dox than Dox alone in SK-OV-3 cells after 24 h incubation. The cellular hydrolysis study showed that 99% of cyclic [W(RW)(4)]-Dox was hydrolyzed intracellularly within 72 h and released Dox. These data suggest that cyclic [W(RW)(4)]-Dox can be used as a potential prodrug for improving the cellular delivery and retention of Dox.
Three fatty acyl conjugates of (-)-2',3'-dideoxy-5-fluoro-3'-thiacytidine (FTC, emtricitabine) were synthesized and evaluated against HIV-1 cell-free and cell-associated virus and compared with the corresponding parent nucleoside and physical mixtures of FTC and fatty acids. Among all the compounds, the myristoylated conjugate of FTC (5, EC(50) = 0.07-3.7 μM) displayed the highest potency. Compound 5 exhibited 10-24 and 3-13-times higher anti-HIV activity than FTC alone (EC(50) = 0.7-88.6 μM) and the corresponding physical mixtures of FTC and myristic acid (14, EC(50) = 0.2-20 μM), respectively. Cellular uptake studies confirmed that compound 5 accumulated intracellularly after 1 h of incubation and underwent intracellular hydrolysis in CCRF-CEM cells. Alternative studies were conducted using the carboxyfluorescein conjugated with FTC though β-alanine (12) and 12-aminododecanoic acid (13). Acylation of FTC with a long-chain fatty acid in 13 improved its cellular uptake by 8.5-20 fold in comparison to 12 with a short-chain β-alanine. Compound 5 (IC(90) = 15.7-16.1 nM) showed 6.6- and 35.2 times higher activity than FTC (IC(90) = 103-567 nM) against multidrug resistant viruses B-NNRTI and B-K65R, indicating that FTC conjugation with myristic acid generates a more potent analogue with a better resistance profile than its parent compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.